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Preface

Anyone who has written programs for computer graphics, CAD, scientific visualization, computer
games, virtual reality or computer animation will know that mathematics is extremely useful.
Topics such as transformations, matrix algebra, vector algebra, curves and surfaces are at the
heart of any application program in these areas, but the one topic that is really central is geometry,
which is the theme of this book.

I recall many times when writing computer animation programs my own limited knowledge
of geometry. I remember once having to create a 3D lattice of dodecahedrons as the basis for a
cell growth model. At the time, I couldn’t find a book on the subject and had to compute Platonic
solid dihedral angles and vertex coordinates from scratch. The Internet had not been invented
and I was left to my own devices to solve the problem. As it happened, I did solve it, and my new
found knowledge of Platonic objects has never waned.

Fortunately, I no longer have to write computer programs, but many other people still do, and
the need for geometry has not gone away. In fact, as computer performance has increased, it has
become possible to solve amazingly complex three-dimensional geometric problems in real time.

The reason for writing this book is threefold: to begin with, I wanted to coordinate a wealth of
geometry that is spread across all sorts of math books and the Internet; second, I wanted to illustrate
how a formula was used in practice; third, I wanted to provide simple proofs for these formulas.

Personally, whenever I see an equation I want to know its origin. For example, why is the volume
of a tetrahedron one-sixth of a set of vertices? Where does the ‘one-sixth’ come from? Take another
example: why is the volume of a sphere four-thirds, 7, radius cubed? Where does the ‘four-thirds’
come from? Why isn’t it ‘five-sixths’? This may be a personal problem I have about the origins of
formulas but I do find that my understanding of a subject is increased when I understand its origins.

Quaternions are another example. There is still some mystique about what they are and how
they work. I can think of no better way of understanding quaternions than to read about Sir
William Rowan Hamilton and discover how he stumbled across his now famous non-commutative
algebra.

I am the first to admit that I am not a mathematician, and this book is not intended to be read
by mathematicians. A mathematician would have approached the subject with a greater logical
rigour and employed formal structures that are relevant to the world of mathematics, but of
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little interest to a programmer wanting to find a formula for a parametric line equation intersecting
a spherical surface.

For example, hyperplanes are a very powerful mathematical instrument for analyzing complex
geometric scenarios, but this is not very relevant to a programmer who simply wants to know the
line of intersection between two planes. Consequently, I have avoided the mathematical
hierarchies used by mathematicians to compress their language into the smallest number of
symbols. This is why I have avoided statements such as H” = R""! X {x,|x, >0 (x,, € R)}, but
included formulas such as: A = 7%}

When I started this book I had no idea of its final structure. I asked colleagues if they had books
on geometry that I could borrow. The first book I came across was Mathematics Encyclopedia
edited by Max Shapiro. There I found a source of definitions that gave some initial breadth to
the subject. I then discovered that I had in my own library The VNR Concise Encyclopedia of
Mathematics edited by Gellert, Gottwald, Hellwich, Hastner and Kidstner. This book helped me
understand some of the strategies used by mathematicians to resolve some standard geometric
problems.

Then I discovered one of Springer’s ‘yellow’ math books: Handbook of Mathematics and
Computational Science by John Harris and Horst Stocker. Further ‘yellow’ books emerged from
Springer: Geometry I by Marcel Berger, Geometry: Plane and Fancy by David Singer, and
Geometry: Our Cultural Heritage by Audun Holme.

One of my favourite math books is Mathematics: From the Birth of Numbers by Jan Gullberg.
It is a work of art, and Gullberg’s clarity of writing inspired me to make my own explanations
as precise and informative as possible.

It was only when I was half-way through my manuscript that I came across one of my
favourite books A Programmer’s Geometry by Adrian Bowyer and John Woodwark. When I
opened it I realized that this is what my own book was about - a description of the geometric
conditions that arise when lines, planes and spheres are brought into contact.

Early in my career I had met Adrian and John when they were at the University of Bath and
they had showed me their ray casting programs and animations. Geometry was obviously an
important part of their work. However, although their book covers a wide range of topics, it
does not show the origins of their equations, and I spent many weeks devising compact proofs
to substantiate their results. Nevertheless, their book has had a great impact on this book and I
openly acknowledge their influence.

My personal library of math books is not extensive but reasonable. But there were many
occasions when I had to resort to the Internet and do a Google search on topics such as ‘Heron’s
formula’, ‘quaternions’, ‘Platonic objects’, ‘plane equations’, etc. Such searches produced
volumes of data but frequently the information I wanted was just not there. So over the past two
years I have had no choice but to sit down and work out a solution for myself.

The book’s scope was a problem - where should it start,and where should it end? I decided that I
would begin with some important concepts of Euclidean plane geometry. For example, recognizing
similar or congruent triangles is a very powerful problem-solving technique and provided some
solid foundations for the rest of the book. Where to end was much more difficult. Some reviewers of
early manuscripts suggested that I should embrace the geometric aspects of rendering, radiosity,
physics, clipping, NURBS, and virtually the rest of computer graphics. I declined this advice as it
would have changed the flavor of the book, which is primarily about geometry. Perhaps, I should not
have included Bézier curves and patches, but I was tempted to include them as they developed the
ideas of parametric formulas to control geometry.
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Mathematicians have still not agreed upon a common notation for their mathematical
instruments, which has made my life extremely frustrating in preparing this book. For example,
some math books refer to vectors as @ whilst others employ a. The magnitude of a vector is
expressed as |d| by one community and ||a|| by another. The scalar product is sometimes written
as d+bora+b and so on.

Some mathematicians use arctana in preference to tan™ '« as the superscript is thought
to be confusing. Even plane equations have two groups of followers: those that use
ax + by + cz+ d =0 and others who prefer ax + by + cz = d. The difference may seem
minor but one has to be very careful when applying the formulas involving these equations. But
perhaps the biggest problem of all is the use of matrices as they can be used in two transposed
modes. In the end, I selected what I thought was a logical notation and trust that the reader will
find the usage consistent.

The book is designed to be used in three ways: the first section provides the reader with list of
formulas across a wide range of geometric topics and hopefully will reveal a useful solution when
referenced. Where relevant, I have provided alternative formulas for different mathematical
representations. For example, a 2D line equation can be expressed in its general form or
parametrically, which gives rise to two different solutions to a problem. I have also shown how a
formula is simplified if a line equation is normalized or a normal vector has a unit length.

The second section places all the equations in some sort of context. For example, how to
compute the angle between two planes; how to compute the area of an irregular polygon; or
how to generate a parametric sinusoidal curve. I anticipate that this section will be useful to
students who are discovering some of these topics for the first time.

The third section is the heart of the book and hopefully will be useful to lecturers teaching the
geometric aspects of computer graphics. Students will also find this section instructive for two
reasons: first it will show the origins of the formula; and second, it will illustrate different
strategies for solving problems. I learnt a lot deriving these proofs. I discovered how important
it was to create a scenario where the scalar product could be introduced, as this frequently
removed an unwanted variable and secured the value of a parameter (often A) which determined
the final result. Similarly, the cosine rule was very useful as an opening problem-solving strategy.

Some proofs took days to produce. There were occasions when I after several hours work
I had proved that 1 = 1! There were occasions when a solution seemed impossible, but then
after scanning several books I discovered a trick such as completing the square, or making a
point on a line perpendicular to the origin.

This project has taught me many lessons: the first is that mathematics is nothing more than
a game played according to a set of rules that keeps on growing. When the rules don’t fit, they
are changed to accommodate some new mathematical instrument. Vectors and quaternions are
two such examples. Another lesson is that to become good at solving mathematical problems
one requires a knowledge of the ‘tricks of the trade’ used by mathematicians. Alas, such tricks
often demand knowledge of mathematics that is only taught to mathematicians.

I would like to acknowledge the advice given by my colleague Prof. Jian Zhang who offered
constructive suggestions whilst preparing the manuscript. Also I would like to thank Rebecca
Mowatt who provided vital editorial support throughout the entire project.

Finally, I thank the authors of all the books listed in the bibliography, as they made the book
possible, and last, but not least, a very big thank you to Robert Gray who typeset the book.

John Vince
Ringwood
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1 Geometry

Let no one enter who does not know geometry.
Inscription on Plato’s door, probably at
the Academy of Athens (c. 429-347 BC).

This section contains formulas often required in computer graphics and is organised
into 19 groups:

1.1 Lines, angles and trigonometry
1.2 Circles

1.3 Triangles

1.4 Quadrilaterals

1.5 Polygons

1.6 Three-dimensional objects

1.7 Coordinate systems

1.8 Vectors

1.9 Quaternions

1.10 Transformations

1.11 Two-dimensional straight lines
1.12 Lines and circles

1.13 Second degree curves

1.14 Three-dimensional straight lines
1.15 Planes

1.16 Lines, planes and spheres

1.17 Three-dimensional triangles
1.18 Parametric curves and patches
1.19 Second degree surfaces in standard form

Most of these formulas are developed in the section on Proofs and placed in context in the
section on Examples.
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Undefined results

The reader will probably be aware that the simplest of formulas must be treated with
great care. For example x = a/b appears rather innocent, but is undefined when b = 0.
Similarly, s = V't will only generate a real value when ¢ = 0. Therefore similar care must
be exercised when using vectors and quaternions. For example, if a vector is accidentally
setnull,e.g.n = ai + bj + ck where a = b = ¢ = 0 then n « n = 0. This in itself is not a
problem, but if this dot product is in the denominator of a formula, then the result is
undefined and will terminate a computer program unless this condition is detected prior
to the division.

Determinants
Some formulas in this section are expressed in determinant form simply because they provide

a neat and compact notation. However, a determinant can be zero, therefore its value must be
determined if it is used as a denominator in a formula.

Vectors

Formulas involving vectors can often be simplified if they are unit vectors. For example,
the angle o between two vectors n; and n, is given by

nen
[l [ - [,

butif [|ny|| = ||ny|| = 1 a = cos” !(n; * n,)

which saves unnecessary computation.

Matrices
Matrix transformations are another source of error when developing computer programs.

Unfortunately, two systems are still in use and create untold havoc when a matrix is copied
from a book or technical paper without knowing the source of the transform. For example,

this text employs column vectors:
x|_|la bl |x
y1ole df Ly

where x' =ax + by
y =cx+dy
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However, when using row vectors we have
’ r | — .l a b
[x ¥1=[x s} Y]
where x'=ax+cy

y' =bx+dy

which does not produce the same result!
The second example can be made identical to the first by transposing the matrix:

[« y1-[x 515 ¢
where x'" =ax + by

y =cx+dy

which is what the reader will have to do if they discover such a matrix. For example, a rotation
matrix using row vectors is

cosa sina
—sina  cosa

but when transposed creates the more familiar column vector form

cosa —sina
sin « cos

Readers not familiar with matrices should appreciate that matrix multiplication is not
commutative, i.e.in general T, X Ty # Tp X Ty. This is easily seen using a simple example:

Given L, =¢ Z] Ts = [; i]
_ (a b e fl_|ae+bg af +bh
then T, XTy | ¢ d]x[g h] [ce+dg Cf+dh:|
_ [ e f a b|_|ae+cf betdf
whereas Ty XT, g h]x [c d] [ag +ch bg+dh

It is obvious that they do not produce the same result.

Efficiency

The formulas listed in this section are not selected on the basis of speed. Such strategies are
beyond the scope of this book and the reader should investigate how these formulas have
been developed by authors and researchers to improve their efficiency.



4 Geometry for computer graphics

1.1 Lines, angles and trigonometry

1.1.1 Points and straight lines

The building blocks of Euclidian geometry are the point and the straight line. A point
indicates position in space and has no size or magnitude. A moving point describes a line,
which has length but no width. From these two concepts evolve the following axioms:

1. Only one straight line can be drawn between two points.

2. Two straight lines intersect in one point only.

3. Two straight lines cannot enclose a space.

As soon as we introduce two or more lines, the idea of a plane surface emerges. Such a surface
can be tested as follows:

A straight line joining two points on a plane surface will also reside on that surface.

From these simple definitions explode the subject of two-dimensional Euclidian geometry.

Parallel lines

Parallel lines remain a constant distance apart and reside on a common surface.

1.1.2 Angles

An angle is formed when two straight lines meet at a point. An angle is a spatial quantity and
measures the rotational offset between the two lines when rotated about their common point
or vertex. By definition, anti-clockwise angles are positive and clockwise angles are negative.
Furthermore, by definition, one revolution equals 360° or 277 radians.

Acute, obtuse, right and straight angles

0° < acute angle < (right angle = 90°) < obtuse angle < (straight angle = 180°)

Complementary angles

Complementary angles sum to 90°.

a+ B =90°
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Supplementary angles

Supplementary angles sum to 180°.
a /B

a + B =180°

Vertical angles

Two pairs of vertical angles are created by two intersecting
straight lines.

a=a and B =B’

Interior, exterior, corresponding and opposite angles

Interior, exterior, corresponding and opposite angles arise

when a straight line intersects a pair of parallel lines. “ p i .

1 1

Interior angl AN

gles a, B, 0, ¢
P2\ 02

Alternate interior angles 6, = «,

Corresponding angles a =a, Opposite angles a, =6,
B, =B, ¢1 =B
b=, o, =0,
0, =9, b =B,

Exterior angles o, B, 60, ¢, Alternate exterior angles « =0,

B, = ¢,

1.1.3 Trigonometry

Angular measurement

By definition

Right angle 90° %[radians]

Straight angle 180° 7 [radians]

One revolution  360° 277 [radians]
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Radians

An angle of one radian subtends an arc length r with a
circle of radius r.

Transcendental trigonometric functions

. a b a
sino = — cosa = — tana = — B
c c b c
a
1 c 1 c 1 b
sca = ——=— seca = =— cota = =— @
sinae a cosa b tana a b
a cos &
tana = cota = —
cosa sin &
Useful trigonometric values
a 0° 30° 36° 45° 54° 60° 90°
sina 0 1 10— Z\E ﬁ 1+ \/E ﬁ 1
4 2 4 2
cosa 1 ﬁ 1+45 ﬁ 10— 2\/§ 1 0
2 4 2 4 2
@na 0 W3 20 ! ls+2V5 5w
3 5
a 0° 30° 45° 60° 90°
-, 0 1 2 3 4
sin®a h il fud 2 =
4 4 4 4 4
2 4 3 2 1 0
cos’a = z z l hd
4 4 4 4 4
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Cofunction identities
sina = cos(: — a]z cos 3

T
csca = sec E—a = sec B

Even-odd identities

| . ™
cosa=sm(2—a)=smﬁ tana=cot(2—aJ=cotB

T 1T
secazcsc(z—a)zcscﬁ cotaztan(z—a)=tanﬂ

sin(—a) = —sina cos(—a) = cosa tan(—a) = —tana

csc(—a) = —csca sec(—a) = seca cot(—a) = —cota

Pythagorean identities

sina + cos’a =1 1 + tan’a = sec?a 1 + cot?a = csc®a

Compound angle identities

sin(a + B) = sina cos B + cosa sin B sin(a — B) = sina cos 8 — cosa sin B

cos(a + B) = cosa cos B — sina sin B cos(a — B) = cosa cos B + sina sin B
tana + tan tana — tan

tan(a + p) = e @np tan(ae— ) = &

1—tanatan B

Double-angle identities

sin2a = 2 sina cos«

Multiple-angle identities

sin 3a = 3 sina — 4sin‘a

3tana — tan’«

1+ tanatan 8

) 2tana
cos2a =1 — 2sin“« tan2a = —
l1—tan"«
2 . 2 cot’a—1
cos2a = cos“a — sin“« cot2a¢ = ——
2cota

cos 3a = 4 cos’a — 3 cosa

cot’a — 3cota

tan3a = > cot3a = 5
1—3tan“« 3cot’a—1
sin 4a = 4sina cosa — 8 sin’a cos « cos 4o = 8 costa — 8 cos?a + 1
4tana — 4tan’ & cot*a—6cot’a+1
tan4a = cot4a =

1—6tan’a + tan*«

dcot’a —4cota
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sin5¢ = 16sin° a — 20 sin® o + 5sin &

5tana —10tan’ @ + tan’ &

tan5a = 5 ”
1—10tan“a + 5tan” «

Functions of the half-angle

.o 1—cosa
sm—zi‘f—
2 2

cos5a = 16cos’ @ — 20 cos° a + 5cos a

cot5a =

Functions converting to the half-angle tangent form

2tang
sina = 2
1+ tan? @
2
1+ tan? &
csca = 2
2tang
2

Relationships between sums of functions

cosa =

+
sina + sin B = 2sin(a 5 B)COS(

+
cosa + cos B = 2COS(a 5 BJCOS(

sin(a +
tana +tan 3 = u
cos acos B
sin(a +
cota+cotf3 = u
sin e sin 3

Inverse trigonometric functions

sin(sin”'x) = x

sin"!(—x) = —sin ! x

1— tan® ad
2
1+ tan? ad
2

o
1+ tan®> —
2

1— tan? o
2

sina — sin B = ZCOS(a : B]sin(a_ﬁ)

cosa —cos B = —Zsin(a:BJsin[a_B)

cot’a —10cot’a + 5¢cota

5cot*a —10cot’a +1

2tan —
tana =
1— tan® —
1—tan® —
cota =
2tan* —

2

2

sin(a — B)

tane —tan = ————

cotae —cot3 = —

cos(cos 1x) = x

cos Y(—x) = — cos™

1

X

cosacos 3

sin(a — )
sina sin 8

tan(tan”'x) = x

tan (—x) = —tan'x
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1.2 Circles

1.2.1 Properties of circles

A circle is the locus of all points in a plane equidistant from a
center point.

Circle

Area of a circle

Perimeter 27r = ad
Length of arc s=—md or s=ra™
360°
o 2
Area of sector 0 P
360°
o[ a° sin « 7
Area of segment r — T — or —|a
360 2 2
.«
Length of chord c=2rsin—
Chords

A chord is a straight line joining two points on the circumference of a circle.
The rotational symmetry of a circle ensures that chords of equal lengths are

equidistant from the center and vice versa.

The chord theorem

If two chords intersect, then the product of the intercepts on one chord

equals the product of the intercepts on the other.

secant

arc

O
diameter
chord

tangent

ab = cd
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Peripheral angles subtended by a chord

Peripheral angles subtended by a common chord are equal.

Secants

A secant of a circle is a straight line that intersects the circle’s circumference in two points.

The secant theorem

If two secants intersect at O outside a circle, then the product of
the intercepts between O and the circle on one is equal to the
product of the two intercepts on the other.

The secant-tangent theorem

If two secants intersect at O outside a circle, and one of them
is tangent to the circle, then the length of the intercept on the
tangent between O and the point of contact is the geometric
mean of the lengths of the intercepts of the other secant.

Arcs

The central angle subtended by an arc is twice the angle on the circle.

When the central angle is 180° the angle at the periphery is 90° and the arc

is half the circumference.

1.2.2 Ellipses

Area on an ellipse “
Area of an ellipse A = 4arab "
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1.3 Triangles

1.3.1 Types of triangle
Acute-angled triangle

a, B and y are acute.

Isosceles triangle

Two equal sides and two
equal base angles.

1.3.2 Similar triangles

Obtuse-angled triangle

One angle () is obtuse.

Equilateral triangle

All sides are equal and all
angles equal 60°.

Right-angled triangle

One angle (a) equals 90°.

Scalene triangle

All sides are unequal and
all angles unequal.

Two triangles are similar (~) if corresponding angles are equal, and corresponding sides

share a common ratio.

Conditions for similarity

Three corresponding sides
are in the same ratio.

Two corresponding sides
are in the same ratio, and

the included angles are equal.

First triangle

Second triangle
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Two corresponding angles
are equal.

a=ao

B=pg

>

1.3.3 Congruent triangles

Two triangles are congruent (identical =) if corresponding sides and angles are equal.

Conditions for congruency First triangle Second triangle

Three sides are equal.

Two sides and the included
angle are equal.

One side and the adjoining
angles are equal.

SN
Il
S
S S
S S
Q Q Q
@ o

a=a'
a=a
B=p ,

1.3.4 Theorem of Pythagoras
Pythagorean formula

In a right-angled triangle, the square of the hypotenuse a ¢
equals the sum of the squares of the other two sides.

a’l=b*+
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1.3.5 Internal and external angles
Internal and external angles

a + B+ x = 180° [internal angles]
a' + B + x' = 360° [external angles]

1.3.6 Sine, cosine and tangent rules

Sine rule

a b c

sin A B sin B B sinC
Cosine rule

a?=b*>+ ¢ — 2bccos A
b*=a’>+ ¢* — 2accos B
=a>+ b*—2abcosC

Tangent rule

A+ B
tan tan
at+b ( 2 ) bt+c _ (

o]
+
@)

tan
cta _

a—>b (A—B] b—c (
tan 5 tan

1.3.7 Area of a triangle

o5
NN
@)
~—
o
|
Q
-+
oo
=]
—

Normal formula
Area = 1 base X height = 1 ch

Area = %bc sin A

Heron’s formula

Area = \/s(s —a)(s—Db)(s—c) where s= %(a +b+c¢)

Determinant formula

Note: If the vertices are anti-clockwise, Area is +ve, else —ve.

a
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1.3.8 Inscribed and circumscribed circles
General triangle

A(x4,¥4), B(xp, ¥5), Clxc, yc) are the vertices of a
triangle with sides a, b, c.

r is the radius of the inscribed circle.
R is the radius of the circumscribed circle.

M(xp yap) is the center of the inscribed circle.

P(xp, yp) is the center of the circumscribed circle.

s=1(@+b+c) and yac=yc—ya etc

.- Area AABC
s

ax, +bx, +cx,

M 2s

x—x+1
A2

Y aB

X aB
x

AC

or

Yac
Y aB

x, +

X
I

or
R

x, =x, +
PTA T abe

Equilateral triangle

r=%a\/§
R=%a\/g
— 1
Xy —g(xA+xB+xC)

I =50a Tyt ye)

Yac b’

Yac
VB

2
c

YaB
Yac

bZ
C2

44X Area AABC

b2
C2

R= abc
4 X Area AABC

Im = 2s
b* X0
2
1| x,
Vp T Va +E
Xap VaB
Xac Yac
b* X,c
2
— 4 € Xy
Yo = Vs 4 X Area AABC
R b x
= + — AC
Tr =T e | ¢ X5
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Right-angled triangle c
.l
r = @
S O
R = 1 hypotenuse
B

1.3.9 Centroid of a triangle

The medians of a triangle are concurrent, and intersect at its centroid two-thirds along a
median connecting a vertex to the mid-point of the opposite side. The centroid is also the

center of gravity of the triangle.

General triangle

AE, BF and CD are medians and P is the centroid.

AP = %AE
BP = %BF
CPZ%CD

1.3.10 Spherical trigonometry

Trigonometric rules
sinA _sinB _ sinC

Sine rule

sina sin8  siny
Cosinerule cosa = cos Bcos y + sin Bsin y cos A
cos A = —cos B cos C + sin B sin C cos a

Area of a spherical triangle

E
Area = wrZE where E= A+ B+ C —180°
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1.4 Quadrilaterals

Square
Diagonal d=a\2 a

2 1 32 d
Area A=a" = 7d a a

d R
Inradius r=z1a :
a
. . a

Circumradius R= T

2

Symmetry properties: A square has equal sides and equal diagonals, which bisect each other
and the interior angles, and they intersect at right angles. The interior angles are right angles.

Rectangle

Diagonal d=A\a +b e N
d_g

Area A=ab by b

Circumradius R=1d a

Symmetry properties: A rectangle has equal diagonals, which bisect each other, and the
interior angles are right angles.

Parallelogram (rhomboid)

a
Diagonals d = \/a2 +b* —2abcos B
b “
d, = \/a2 +b* —2abcosa h &)
2 2 2 2 ? h p

d’ +d, =2(a +b°) a
Altitude h=bsina
Area A =ah = absina

Symmetry properties: A parallelogram has two pairs of parallel sides with equal opposite
sides. Adjacent interior angles are supplementary and opposite interior angles are equal.
The diagonals bisect each other.
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Rhombus
Diagonals d =2a cos% 2
o dl
d, = 2asin— al a
2 )
d* + d* = 44* .
1 , = a a
Altitude h=asina
Area A=ah=a’sina= %dld2

Symmetry properties: A rhombus has two pairs of parallel, equal sides. Adjacent interior
angles are supplementary and opposite interior angles are equal. The diagonals bisect each
other and the interior angles, and intersect at right angles.

Trapezium
¢
Diagonals d = \/az +b*> —2abcos B dy
al |, 4 b
Y R
d, \/a d” —2adcosa of p
Altitude h=dsina = bsinf ¢
Area A= %(a +c)h
Symmetry properties: A trapezium has one pair of parallel sides.
General quadrilateral
Area A=>dd,sin6 <8
9/ & b
A=i(b2+d2—a2—c2)tan0 for 8 < 90° d J
1
o
A=1\4ld — " +d* —a® Y a

A= \/(s —a)(s — b)(s — ¢)(s — d) — abcd cos* &

where s=i(a+b+c+d and e=1(a+p)

Symmetry properties: A general quadrilateral has all sides of different lengths and no sides
parallel. The sum of interior angles = 360°, and the sum of exterior angles = 360°.
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Tangent quadrilateral
Area A=%r(u+b+c+d)
A=sr
where s=1(a+tb+c+d

Symmetry properties: A tangent quadrilateral must have an inscribed circle.

Cydlic quadrilateral

_ (ab + cd)(ac + bd)

Diagonals d, d+ be

4 \/ (ac + bd)(ad + be)

2 ab+cd
d1d2 = ac+ bd
Area A=s—a)s—b)s—c)(s—d)
where 5:%(a+b+c+d)

(ac + bd)(ad + bc)(ab + cd)
(s—a)s=b)(s—c)s—d)

Circumscribed radius R = % \/

Symmetry properties: A cyclic quadrilateral must have a circumscribed circle. Opposite
interior angles are supplementary (sum to 180°).
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1.5 Polygons

1.5.1 Internal and external angles of a polygon

The internal angles of an n-gon sum to (n — 2) X 180°.
Quadrilateral (n = 4)

4
>a, =360°
i=1

The external angles of an n-gon sum to 360°.
Quadrilateral (n = 4)

4
>a, =360°
i=1

1.5.2 Alternate internal angles of a cyclic polygon
The alternate internal angles of a cyclic n-gon sum to (n — 2) X 90°
[#n = 4 and is even].

Cyclic hexagon (n = 6)

a; o3+ as=a, +ay + ag = 360°

1.5.3 Area of a regular polygon

Area of a polygon using the number of edges
Area = 1 ns® cot(z)
4 n

| T
or Area = nr’ sin| — |cos| —
n n

1 2
or Area = =—nr? sin -
2 n
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where n = number of sides
s = length of side
r = radius of circumscribed circle

Area of a polygon using Cartesian coordinates
n-1

1
Area = E 2 (xiyi+1(m0d n yixiﬂ(mod n))
i=0

where the n vertices (x, y) are defined in counter-clockwise sequence.
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1.6 Three-dimensional objects

1.6.1 Prisms

General prism

Parallelepiped

Rectangular parallelepiped

h
S = 2(ab + ah + bh) v
V = abh L -

El b
a

1.6.2 Pyramids

Rectangular pyramid L
§=ab+L(aVah? +b* +byah? +a?) .l

whena =1>b S=a*+aVah* +a® a
V= ;abh

Volume of a frustum

V =1h(A +A,+A4,)

P
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Tetrahedron

xﬂ )}ﬂ
V=51% %
xC yC
O is the origin.
1.6.3 Cylinders
Irregular cylinder
V = Ah
Cylinder
S = 27mr(r + h)
V = mrth

1.6.4 Cones
Right circular cone

Lateral surface area A; = 7rs
S=ar(r+s)

V= %771’2]’1

Right circular conical frustum

Lateral surface area S; = ms(r; + r,)

2.2
S=a(" +r, +s(r +r1))

V= 77'h(r12 +r

L
3 2

1.6.5 Spheres

Sphere

2
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Spherical segment

S

V= %77]1(31’12 + 3r22 +h?)
when r; = 0 V= %77'h(3r22 +HK?)
1.6.6 Tori
Circular torus

S =47*R

V= 27*r"R

1.6.7 Platonic solids

There are five Platonic solids: tetrahedron, cube (hexahedron), octahedron, dodecahedron and
icosahedron.

Tetrahedron Cube Octahedron Dodecahedron Icosahedron

4w C OO

Each object is constructed from a common regular polygon and the inherent symmetry
ensures that every vertex lies on a circumsphere of radius R,. A second inner-sphere of
radius R;, touches the mid-point of each face, whilst a third mid-sphere of radius R;,; touches
the mid-point of each edge. These radii, together with the surface area A, volume V and the
dihedral angle between any neighboring pair of faces A can be expressed in terms of the
parameters p, g, f and s, where

p = the number of edges in a face

q = the number of edges associated with a vertex
f = the number of faces

s = the edge length

The following steps show the formulas used for calculating R;,, R;;;» R, A, A and V.

Ratio of in-sphere radius R;, to edge length s

T T
cot — cos —

q
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Ratio of mid-sphere radius R, to edge length s

™
COS —

Ratio of circumsphere radius R, to edge length s

sin K
R_1 q
s 2
\/ sin’ ™ _ cos? K
q p
Dihedral angle A
Ccos —
A=2sin!| —4
.
sin—
p

Ratio of the surface area A to edge length s
A ™
s? p

Ratio of the volume V to edge length s
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1.7 Coordinate systems

1.7.1 Cartesian coordinates in [R?

The Cartesian coordinates of a point in R? are given by the ordered pair (x, y).

Second quadrant First quadrant

w <

(=3,2)¢ 9G.2)
|
|
|
|

-2 -1 34

X

- 5(3,-2)
Third quadrant _34 Fourth quadrant

Distance in [R?

Given two points (xj, y;) and (x,, y,) in R?, the distance between them is given by

d= (e, = %)+, ~ )

1.7.2 Cartesian coordinates in R
The Cartesian coordinates of a point in R’ are given by the ordered triple (x, y, z). The system

illustrated is right handed with the z-axis coming towards the viewer. A left-handed axial
system has the z-axis directed away from the viewer.

3T 03,32
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Distance in 3

Given two points (x;, y;,2;) and (x,, y,, ;) in R?, the distance between them is given by

d= \/(xz —x) +(y, = y) +(z,—z)

1.7.3 Polar coordinates

The polar coordinates of a point (x, y) in R* are given by the ordered pair (r, 6)

where x =rcos0
y =rsinf

and

6 = tan! (ZJ (1st and 4th quadrants only)

Distance in R?

Given two points (r},0,) and (r,, 6,) in R?, the distance between them is given by

d= \/rlz +1, —2rr, cos(6, —6,)

1.7.4 Cylindrical coordinates

The cylindrical coordinates of a point (x, y, z) in R? are given by the ordered triple (r, 6, z)
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where x=rcosf
y=rsinf
Z =

and r=x*+ yz

6 = tan! [Z) (Ist and 4th quadrants only)
x

zZ=2

1.7.5 Spherical coordinates

The spherical coordinates of a point (x, y, z) in R? are given by the ordered triple (p, 6, ¢)

where x = psin¢ cos b
y=psin¢sing
z=pcos¢

and p=+x*+y +2

6 = tan”! Z) (1st and 4th quadrants only)
x

-z
\/xz + yz + 2

Note: The z-axis is normally taken as the vertical axis.

¢ =cos !
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1.8 Vectors

To simplify this summary all vectors have been described as 3D vectors, although where
appropriate, the rules equally apply to 2D vectors.

1.8.1 Vector between two points Py(xy, 2, 25)

Given P,(x1,y), zy) and P, (x,, ¥5, 2;). a is a vector from P, to P,.

. X, =X X, Py(xy, y15 21)
Bh=a=1y =) |7V
%78 2,
1.8.2 Scaling a vector a_  sa
qu
sa=|sy,
SZa
1.8.3 Reversing a vector —a
a
X —X
a a
a=\y, —a=17),
z —Z

IS)
AN

1.8.4 Unit Cartesian vectors

1.8.5 Algebraic notation for a vector

a=ux,i+yj+ zk
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1.8.6 Magnitude of a vector e fal e >

_ 2 2 2
|la]| = ,/xa +y, tz,

1.8.7 Normalizing a vector to a unit length « 1
I
. X .y . z a a
A= L4ty Lk
llall - llall ™ [lall

1.8.8 Vector addition/subtraction

at+bh
b
x, X x, *x,
a=\y, b=1, atb=|y, >y, 1
z, z, z,*z
Commutative law of addition at+tb=b+a
Associative law of addition (a+b) +c=a+ (b + ¢)
1.8.9 Compound scalar multiplication
Distributive law of multiplication r(sa) = (rs)a
r(a+b)=ra+rb and
(r+s)a=ra+sa

1.8.10 Position vector Y P(x;, y1, 21)

Point P, (xy, y1,2;) has a position vector a

a=xi+yj+zk

1.8.11 Scalar (dot) product

asb=xx +yy +zz =|all|b|cosc

a-a = |falf

If ais a unit vectoraca =1

ab=0 & alb
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Commutative law of multiplication a*b=b-a

Distributive law of multiplication a*(b+c)=a*b+a-c
(ra) * (sb) = rs(a+b)
1.8.12 Angle between two vectors b

a=xityjtzk

b=xi+yjt+tzk /

o = cos! xx, tyy +z,2
lfall - IIbll

When a and b are unit vectors

a = cos Mxxp + Yy T 242p)

1.8.13 Vector (cross) product c b
aXb=c
where llell = lall-{[bl sin ’

a,b, c form a right-handed system

axb=a Zli+|%a Ya|j+|%a Va|k
b % Z, % X My
i j k
or axXb=|x  y, z
X% My %
axXa=0

1.8.14 The commutative law doesnothold:a X b= —b X a

Distributive law  (ra) X (sb) = rs(a X b)
aX(b+c)=aXxXb+aXc
iXj=k jxXk=i kXi=j jXi=-k
kXj=-i iXk=-j

1.8.15 Scalar triple product ( (
xa ya Zﬂ
[a,b,c]=as(bXc)=|x, y, =z ‘
xb b Zb ,

c yC c
Volume V=a, b, c]
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[a,b,c] = [b,c,a] = [c,a,b] = —[c,b,a] = —[b,a,c] = —[a,c,b]
[a,b,c] = 0 < a,b,care coplanar (>0 < a,b,c) are right-handed.

1.8.16 Vector triple product

aX(bXc)=(a*c)b—(a*b)c (@aXb)yXc=(a*c)b—(b-c)a

1.8.17 Vector normal to a triangle P3(x3, 3 23)

. . . Py(xp, ¥2 22)
Given three points P;, P,, P; defined in counter-

clockwise sequence, n is the normal vector:

x2 _xl x3 _xl Pl(xl,yl, Zl)
a=|y,—y b=|y,—» n=aXxXb
2,77 374

1.8.18 Area of a triangle

Given three points P;, P,, P3, area A is:

X _Xl X, — X

3 1
A=7axbll a=|y,—y b=y, —y
2,74 Z; 74
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1.9 Quaternions

1.9.1 Definition of a quaternion

A quaternion is a four-tuple formed by a scalar and a vector:
q=[sV]

where s is a scalar and v is a vector.

Algebraically q=[s+xi+yj+ 2Kk]

where s, x, y and z are all scalars.

1.9.2 Equal quaternions

Given q = [s; + xi + yjj + z/K]
and qy = [s; + x50 + yyj + 2,K]

q = Q@ if =5, i1=% y1=0n 2172

1.9.3 Quaternion addition and subtraction

Given q = [s; + xi + yjj + z/K]
and qy = [s; + x50 + yyj + 2,K]

Q= q=[(s51 £ 5) + (1 Tx)i+ (1 T ,)j + (21 = 2)K]

1.9.4 Quaternion multiplication

Given qy = [s1 + x4 + yj + 2)K]
and qy = [s; + x50 + yyj + 2,K]
Hamilton’s rules ==K =-1=ijk

j=k jk=i ki=j
ji=-k ki=-i ik=—j
i j k

i(-1 k —j
and summarized as jl-k -1 1
k|
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9.9, = [(5152 XX TN T lez) + (Slxz T5,% T 52, — yzzl)i
+(s,y, T 5,0, T zx, —2,x)j+ (5,2, + 5,2, + x, ¥, — xzyl)k]

which can be rewritten using the scalar and vector product notation
qiqz = [(515 = V1 V3), 51V + 5,v; + vy X v

Note that quaternion multiplication is non-commutative.

1.9.5 Magnitude of a quaternion

Given q=I[s+xi+yj+ zk]

lall = {s* +* + 5 + 22

1.9.6 The inverse quaternion

Given q=1[s+xi+y + zK]
_ s—xi—yj—zk
then g =bmAoimAd
llall
and qq '=qlq=1

1.9.7 Rotating a vector

A vector p is rotated to p’ by a unit quaternion using:

P’ =qpq’

h =c0sgsingv
where q 5 ) 2

Vis the axis of rotation and 6 the angle of rotation.

1.9.8 Quaternion as a matrix

Given q=[s,v] where s= cos(g), v = ﬁsin(g)
It is equivalent to the following matrix
sS+xt—y -7 2(9?/ — 52) 2(xz + sy)

2(xy + sz) sS+y —x-72° 2(yz — sx)
2(xz — sy) 2(yz + sx) sS+z22—-x—y°
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1.10 Transformations

The following transformations are divided into two groups: R? and R’. The matrices are
expressed in their homogeneous form, which ensures that they can be combined together.
The reader should be aware that, in general, these transformations are not commutative, i.e.
Ty X Ty # T, X T).

1.10.1 Scaling relative to the origin in R

] [s. 0 o] [« ’
)/' =|0 Sy 01- y Syy """""""""""""" ? )
1 1
0 01 Yooty
S, = x-axis scaling factor
S, = y-axis scaling factor ]
X Sx X

1.10.2 Scaling relative to a point in R

x: S, 0 x,(1=S) x X

YU=10 S, »A=S)|-|y

1 0 0 1 1
S, = x-axis scaling factor
S, = y-axis scaling factor | xp x X X
(x> yp) = the reference point
1.10.3 Translation in [R

Y
x: 10 Tx X y' R S g(x’,y')
)1/ =10 1 Ty . )1/ T, |
001 )
T, = the x-axis translation - TX—ﬁ
T, = the y-axis translation : >
X X X
1.10.4 Rotation about the origin in R? Y)
LY

x' cosae —sina 0 x

y' |=|sina cosa O y .

1 0 0 1 1 S (27
a = the angle of rotation X
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1.10.5 Rotation about a point in R

. . Y
x' cosa —sina x,(l—cosa)+ y,sina x o (¥, y)
Y |=|sina cosa y,(l—cosa)—x,sina ||y
1 0 0 1 1 /
"’a,,, o)
a = the angle of rotation (o 3,)
(x> yp) = the point of rotation >

1.10.6 Shearing along the x-axis in R

x' 1 tana 0| |x Y ) @y
oA I O S N 1 Ve °
1 0 0 1 1

a = the shear angle a
X

1.10.7 Shearing along the y-axis in [R?

x' 1 00 X Y o(x', )

y|=|tana 1 0|-|y

1 0 0 1 1 ixtana

¢ S(x.)
a = the shear angle
X

1.10.8 Reflection about the x-axis in [R?
x' 1 0 O x Y
y/ =lo -1 o]~ y T(x, y)
1 0 0 1| |1 !
!

1.10.9 Reflection about the y-axis in [R

x' -1 00 X
Al S N Bt @ | Wy
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1.10.10 Reflection about a line parallel with the x-axis in R

x' 1 0 0 X 4 o (x,y)
Y= =1 2y, (" |y ,
1 0 0 1 1 Yp——

o',y

y = yp the axis of reflection —

1.10.11 Reflection about a line parallel with the y-axis in [k

x -1 0 ZxP x
yi={0o 1 0 ||y
1 0 0 1 1

x = xp the axis of reflection

1.10.12 Translated change of axes in [R?

x' 1 0 —x; X
A el U e A P
1 0 0 1 1

(x7> y) = the translation

1.10.13 Rotated change of axes in k2

x' cosa sina 0 x
y'|=|—-sina cosa Of-|y
1 0 0 1 1

a = the angle of rotation

1.10.14 The identity matrix in R2

kL

—\ R
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1.10.15 Scaling relative to the origin in R

X' S, 0 0 0 X
= 0 S, 0 0f |y
z 0 0 S 0 z
1 0 0 0 1 1

S, = x-axis scaling factor
S, = y-ax.is scaling factor
S, = z-axis scaling factor

1.10.16 Scaling relative to a point in 3

' S, 0 0 x,1—-S5)
0 S, 0 y,0a-5)
0 0 S 2z,0-5)
0O 0 0 1

!

— N R
— NN\ R

S, = x-axis scaling factor
S, = y-ax.is scal‘ing factor
S, = z-axis scaling factor

(xp> ¥p» 2p) = the reference point

1.10.17 Translation in R3

X 100 T | [«
y’ _ 010 Ty y
Z1 1001 T | |2
1 000 1 1
(T, Ty, T;) = the translation

1.10.18 Rotation about the x-axis in 3

0 0
cosa —sina
sina  cosa

0 0

— N R
Il

[= NNl o

—o oo

— NN\ R

a = the angle of pitch about the x-axis
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1.10.19 Rotation about the y-axis in R

x' cose 0 sina 0 x

yl_] O 1 0 O0f.|y

z' —sina 0 cosa O z TN

1 0 0 0 1 1 z oy z) .y, 7) X

a = the angle of yaw about the y-axis

1.10.20 Rotation about the z-axis in R3

x' cosa —sina 0 0 x
y'|_|sina cosa 0 Of |y
z' 0 0 10 z
1 0 0 0 1 1

a = the angle of roll about the z-axis

1.10.21 Rotation about an arbitrary axis in R

g a’K + cosae  abK —csinae acK +bsina
"I _| abK +csinae  b*K +cosa  bcK — asina

acK —bsina bcK +asine 2K + cosa
0 0 0

el

—o o o
N R

K=1-cosa
axisv=ai + bj + ckand ||v|]| = 1
a = the angle of rotation about v

1.10.22 Reflection about the yz-plane in R?

x' -1 0 0 0 x
yl{_10 1 0 0f. |y
z' 0 01 0 z
1 0 0 0 1 1

1.10.23 Reflection about the zx-plane in R?

x' 1 0 0 0 x
y1_{0 -1 0 Of. |y
z 0 0 1 0 z
1 0 0 01 1
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1.10.24 Reflection about the xy-plane in R?

x' 1 0 0 0 X
yl_10 1 0 Of.|y
z' 00 -1 0 z
1 00 0 1 1

1.10.25 Reflection about a plane parallel with the yz-plane in R?

x’ -1 0 0 2x, x
yi_10 10 o0 y
z 0 01 O z
1 0 0 0 1 1
x = x, the position of the yz-plane

1.10.26 Reflection about a plane parallel with the zx-plane in R?

~

0
-1

0

0

0
2y,
0
1

— N R
SN
I
co o~
o~ oo
— NN R

y = y, the position of the zx-plane

1.10.27 Reflection about a plane parallel with the xy-plane in R?

~

X 1 0 0 0 X
y{_10 1 0 0 y
z 0 0 —1 2z, z
1 0 0 O 1 1

z = z, the position of the xy-plane

1.10.28 Translated change of axes in R

~

—x,

¥y

—z,
1

he translation

~

1
_|o

HN\YR
oo o
=Nt R

0
1
0
0
t

0
0
(xr,)’T, z7) =
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1.10.29 Rotated change of axes in 3

x’ oy hy 0 x
’
Vil=|T1 T T O J
z Ty Ty Ty O z
1 0 0 0 1 1

711> 12> 113 are the direction cosines of the secondary x-axis
121> T2, T3 are the direction cosines of the secondary y-axis
731, 132, 33 are the direction cosines of the secondary z-axis

1.10.30 The identity matrixin R*

~

P—‘N\\<\R
I
SO O
(=Nl )
o~ OO
—_o oo
— NN R
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1.11 Two-dimensional straight lines

1.11.1 Normal form of the straight line equation

Given y=mx-+c
Ay .
then m = — the slope of the line
Ax
and ¢ = the intercept with the y-axis
X
1.11.2 General form of the straight line equation
Given ax+by+c=0 Y
then n = ai + bj n
X
1.11.3 Hessian normal form of the straight line equation
Given xcosa + ysina =p
|p| is the perpendicular distance from the origin to the line,
and ¥ =L and y' = L
cos o sina
unit vector n = cosai + sinqj : X

ax + by + ¢ = 0 is converted into the Hessian normal form

ax by c

by + + =0
Ja +02 N +p? o +p?
1.11.4 Parametric form of the straight line equation YA
P
. _ Av M
Given p=t+aAv . P
where t=x7d+ ygj t
and v=xi+yj
T(xr, y7) is a point on the line and A is a scalar. 5
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1.11.5 Cartesian form of the straight line equation
Given ax+by=c Y
then c=d|n|| = ax, + by,
where P (x, o) is a point on the line. Pt 0
. . a b
The normalized formis —x+—y=4d
[lnl[ [l X

1.11.6 Straight line equation from two points

Normal form of the line equation

Given Pi(x1,y1) and  Py(xy,y,)
and y=mx+c
then m=22"2
X, 7%
and C:yl—xl(u]
X T4

General form of the line equation

Given Pi(x;,y1) and P, (xpy,)
and Ax+By+C=0
then A=y, —n

B=x —x,

C= —(x1y, — x1)

Cartesian form of the line equation

Given Pi(x;,y1) and Pz(x2>)’2)

and ax+by=c

then a=y,—y b=x—x

or 1 Nlg+% lyle
1y, x, 1 X,

Cc = x1y2 - xzyl

Py(xp, y2)

Py(xp yp)

Py(x5, y2)

Py(xp, y1)

Py(xy, y1)
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Parametric form of the line equation

Given Pl(xl,yl) and Pz(xz,yz)
and p=p:t+Av
and V=P P

Pis between P; and P, for A € [0, 1].

1.11.7 Point of intersection of two straight lines
General form of the line equation

Given ax+by+c=0
ax +by+c=0

X _ I _ -1
then ¢ b a4 a b
CZ bZ a2 2 aZ bZ

b —cb ac, —ac
Intersect at x,=-+t—t2 yp = —=

ab, —a,b, ab, —a,b,
The lines are parallel if a;b, — a,b; =0
Parametric form of the line equation
Given p=r+a q=s+¢eb
where r = xpi + ygj s = x4 + y5j
and a=uxi+yj b = x,i + y,j
then A= % U's = ¥i) = % (xs = xp)

xbya o xayh

and - X0 = Ye) = (5 — Xg)

xhya o xayb
Point of intersection  xp = xz + Ax, Yp=VrT A
or Xp = Xg T €Xxy Yp=Yst &Yy

The lines are parallel if x,y, — x,y, = 0

X
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1.11.8 Angle between two straight lines

General form of the line equation

Given ax+by+ec=0 ax+by+c=0 v\
where n=aji+ bjj m = a,i + byj mA ./ n
angle a= cosl(—n.m ]
[In[ - [jml| _
X
If |n|| = ||m|| = 1 a = cos !(n*m)

Normal form of the line equation

Given y=mx+ ¢ y=mx + ¢
— -1 1+ mlmZ

angle @ =008 | ————
\J1+ my 1+ m;
m, —m

or o= tan_l 1—2
1+mm,

If the lines are perpendicular m;m, = —1.

Parametric form of the line equation

Given p=r+Aia q=s+eb
angle a= cosl(ﬁJ

[l - /bl
If ||a]| = ||b]| = 1 a = cos !(a*b)

1.11.9 Three points lie on a straight line
Given Pi(x;,y1), Pylxyyy) and  Ps(xs,y;)
and r= ﬁ and s = ?Ps

The three points lie on a straight line when s = Ar.
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1.11.10 Parallel and perpendicular straight lines

General form of the line equation

Given ax+by+c=0 ax+by+c=0
where n=aji+ bj m = a,i + b,j

The lines are parallel if n = Am.

The lines are mutually perpendicular if n+m = 0.

Normal form of the line equation

Given y=mx+ ¢ y=mx + ¢
The lines are parallel if m; = m,.

The lines are mutually perpendicular if m;m, = —1.

Parametric form of the line equation

Given p=r+Jla q=s+eb
The lines are parallel if a = kb.

The lines are mutually perpendicular ifa+b = 0.

YA

<Y

1.11.11 Position and distance of a point on a line perpendicular to the origin

General form of the line equation

Given ax+by+c=0
where n = ai + bj
q = An
where A=—
nen
If ||n]| =1 A=—c

Distance 0Q = ||q||

<Y
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Parametric form of the line equation

Given q=t+Av
—_— .t
where A=Y
Vev
If|v]| =1 A= —vet
Distance 0Q = ||q||

1.11.12 Position and distance of the nearest point on a line to a point

General form of the line equation

Given ax +by+c=0
where n =ai+ bj
q=p+An
where A= _nepte
nen
If ||n|]| = 1 A=-—-n-p+c
Distance PQ = ||An]|

Parametric form of the line equation

Given q=t+Av

where PRAL i)
Vev

If vl =1 A=ve(p—1

Distance PQ=|lp—t— Ay

1.11.13 Position of a point reflected in a line

General form of the line equation

Given ax +by+c=0

where n = ai + bj

Qis P’s reflection in the line q=p— An

A

nen

If[n]| =1 A=2n-p+c)

_2m-.p+o)

YA
0
q
0 X
YA
0 X
YA P
T
Av
t
X
7)
q
o X
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Parametric form of the line equation

Given s=t+ Av YA T P
Y
Qs P’s reflection in the line t
q=2t+ev—p ,
o a
where e= M Q -
Vev 0 X
Iflvl]] =1 e=2ve(p—1t)
1.11.14 Normal to a line through a point
General form of the line equation
Given line m ax + by + ¢ = 0 and a point P(x,, y,) Y p
Line n is —bx +ay + bx, —ay, =0 " m
X
Parametric form of the line equation
Given line m q =t + Avand a point P YA
P
u=p-—(t+ Av) P u
m
where /\ — M T ?\‘V Q
VeV | q
t
Elvi=1  A=ve(p-9 :
Line n is n=p+ eu where¢isascalar. -
X
1.11.15 Line equidistant from two points
General form of the line equation v,
L
Given Pi(x1,y1) and  Py(xy¥,) P(x, y) i
>
The line equation is =
o P
(x, =x)x+(y, _yl)y_%(xj —x12 +)’§ _),12):0
X
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Parametric form of the line equation

Given Pi(x1,y1) and  Py(xy,y,)
q=p+Av
p=1(p, +p,)

v=—(h—y)itx—x)j

1.11.16 Two-dimensional line segment
Line segment

P, (x1, 1) and Py(x,, y,) define a line segment and
p: and p, are their respective position vectors.

Therefore p=p; + Aa
where a=p,—p:
therefore xp=x; + Axy — x1)

yp=y1+ A2 =)
P is between P; and P, for A €[0, 1].

Intersection of two line segments

Given p=r+tia and q=s+t¢eb

where a=x,i+y,j and b=xi+ yj

_ %05 =)~ (% —x)

xbya - xayb

then

_ %05 =)~ 2G5 —x)

xbya - xayb

and

If 0 < A < 1and 0 < & < 1 the lines intersect or touch one another. A possible point of
intersection is given by

Xp=x; + Ax, Yp=y1 T Ay,
or Xp = X3 T &xp yp=yst ey

The line segments are parallel if x,y, — x,y, = 0.
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The table below illustrates the relative positions of the line segments for different values of
Aande.

A e e e

b b b
a
0 0 a 0<e<l 1
b b
a

0<A<1 0 a 0<e<l1 a 1 b
a

1 0 a 0<e<l1 a 1
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1.12 Lines and circles
1.12.1 Line intersecting a circle
General form of the line equation
Given a line ax + by + ¢ = O where a*> + b> = 1 and a
circle radius r with center (x¢, y¢).
The potential intersection coordinates are given by
X =x,—ac, = ,lc;(az —1) + b2r?
X
Y=Y —bc, £ Jci(bz —1)+a’r?
where cr=axc+ byc+ ¢
Miss 2P —1)+a* <0
Touch AW -1 +arr=0
Intersect AWM —1)+ar*>0
Parametric form of the line equation P
Given aline p = t + Av where ||v|| = 1 and a circle radius (> ¥e)
r with center (xc, yc) with position vector ¢ = xi + ygj. \
The potential intersection coordinates are given by
Xxp = X7+ Ax, X

yp=yrtAy,
where A= sev £ (sev) — [P +
s=c—t
Miss (s+v)> —|Is]?+ <0
Touch (s+v)>—|ls]P+7*=0
Intersect (sev) —|s|P+7>0

1.12.2 Touching and intersecting circles

Given two circles with radii r; and r, centered at
C, (xcp yc1) and C, (xcy, ycz) respectively.

Touch d=r +r
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. h
Touch point Xp = Xo, T E(xcz = %)
_ h
Jp = Vo +E(yc2 ~Yar)
Separate d>r +r,
Intersect ntrn>d>|rn—rn

Point(s) of intersection

where

and

P1
Yo = Yo TN, Texy

Xp = Xo TAX; T ey,

2 2 2
n r2+d

A =
2d*
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1.13 Second degree curves

1.13.1 Circle
General equation

Center origin

Center (x,, y.)

Parametric equation

Center origin

Center (x,, y,)

1.13.2 Ellipse

General equation

Center origin

Center (x,, y.)

Parametric equation

Center origin

Center (x,, y.)

?*+yr=r
(x_xc)2+(y_)’c)2:r2

x=rc$)st} 0=t=2m
y =rsint
X =x_+rcost
¢ ) 0=t=2w
y =y trsnt
2 2
X
a b

_ 2 _ 2
(x—x,) +(y y.) 1

a* b
x=acost| _,_,
y = bsint

X=X, + acost

. } 0=t=2mw
y =y, tbsint
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1.13.3 Parabola
General equation

Vertex origin

Vertex (x, y,)

where fis the focus.

Reversing the axes

Parametric equation

Vertex origin

Vertex (x., y.)

Reversing the axes

1.13.4 Hyperbola

General equation

yh=afx
=y =4f(x—x.)

X’ = 4fy
x =t
y=2\/?t
x=x_+t
y=yc+2t
x:2\/?t
y=t

Centered at the origin, with the transverse axis

coincident with the x-axis.

Foci at (*¢,0)

Parametric equation

Center origin

2
x
_2_)’_2:1
a b
c=+a*+b
x = asect

y = btant
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1.14 Three-dimensional straight lines

1.14.1 Straight line equation from two points

Given P, and P,
V=P~ P
P=p1 T Av
Pis between P, and P, for A € [0, 1].

If ||v|]| = 1, A corresponds to the linear distance along v.

1.14.2 Intersection of two straight lines

Given p=t+Aa and q=s+¢b
where t=xi+yj+zk and s=xi+yj+zk
and a=xi+yj+zk and b=xi+yj+zk
If a X b = 0 the lines are parallel and do not intersect.
If (t —s) * (a X b) # 0 the lines do not intersect.
Solve  Ax, — ex, = x, — x;

Na = 8Vp =Ys — Wt

Az, — &zp, = 2z, — 2,

for values of A and «.

1.14.3 The angle between two straight lines

Given p=r+ )a
and q=s+eb

Angle a=cos_1( a-b )
llall-[[bl]

If|la]] = |b]] =1  «=cos (a*b)

1.14.4 Three points lie on a straight line
Given three points P;, P,, P,
Let r= @ and s= HP;

The points lie on a straight line when s = Ar where A is a
scalar.
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1.14.5 Parallel and perpendicular straight lines

Given p=r+pua
and q=s+eb
The lines are parallel if a = Ab where A is a scalar.

The lines are perpendicular ifa+b = 0.

1.14.6 Position and distance of a point on a line
perpendicular to the origin

Given p=t+Av
where N= Vot
Vev
If|lv]| = 1 A= —v-t
Distance OP = ||p||

1.14.7 Position and distance of the nearest point
on a line to a point

Given q=t+Av

where A=Y
Vev

Ifv]]=1 A=ve(p—1t)

Distance PQ=|p—t— Av||

1.14.8 Shortest distance between two skew lines

Given p=q+ttv
and p=q +1v

J= (g —q)+(v XV

Shortest distance -
v v
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1.14.9 Position of a point reflected in a line

Given s=t+ Av
and a point P with reflection Q

q=2t+ev—p

2ve(p—

where g= @0
Vev

Ifv]|=1 e=2ve(p—1t)

1.14.10 Normal to a line through a point

Given q=t+Av

the normal is u=p-—(t+Av)

where A= vep—t
Vev

If|}v][ = 1 A=velp -
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1.15 Planes

1.15.1 Cartesian form of the plane equation
Given ax +by+cz=d
where n=ai+ bj+ck

If Py is on the plane, and A is the perpendicular distance
from the origin to the plane

d=mn-py = h|ln]|

The normalized form is Ax + By + Cz = D

a b c
h A=— B=— C=— D=h
where (|l [In| (||

1.15.2 General form of the plane equation

Given Ax+By+Cz+D=0
where n = Ai+ Bj + Ck

Its relationship to the Cartesian form is as follows:

A=a B=b C=c¢ D=-ne+p,=—d

1.15.3 Hessian normal form of the plane equation

Given Ax+By+Cz+D=0

The Hessian normal formis nx + nyy + n3z+p =20

A B
where n = —— n, = ——————
VA2 + B+ VA? + B* +C?

- C B D

P —
VA’ + B +C° VA* + B +C°
In vector form: P(x, y, z) is a point on the plane with position vector p

then p=uxi+y +zk
and n=mi+ nyj + nsk

therefore n*p=—p
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1.15.4 Parametric form of the plane equation

Given p=t+ia+eb

T(x7, y1> 27) is on the plane with position vector t.
a and b are two unique vectors parallel to the plane
a point on the plane is given by

xp=xp+ Ax, + €x;

yp=yr+ Ay, +ey,
zp=zr+ Az, + &z,

1.15.5 Converting from the parametric form to the general form

Given p=t+tia+eb

where [la]] = |Ibl| =1

and )\:(a-b)(b-t)—a-t
1-(a+b)

and 8:(aob)(a-t)—b-t
1—(a«b)’

The normal vector is p = xpi + ypj + zpk
|p|| is the perpendicular distance from the plane to the origin

therefore Ax+By+Cz+D=0

_xP B_yP C_ZP D=

where A=—- B=Z- C=—— D=—|p|
lIpll lIpll [lpll

1.15.6 Plane equation from three points

Given R, S, T and P(x, y, z) are on a plane

then ax+by+cz+d=0
where a=|rs  Yr F T %
Jr™JVr ZrT %

b=|% "% XX
Z, =2z, X

R

T~ X

c=|% "% Vs Ir
Xr = Xp Jr— R

d = —(ax, +by, +cz,)
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I yr 24 x, 1 z,
or a=|1 y, z b=|x; 1 z
Ly, z X 1z,
X yp 1
c=lx; y; 1 d = —(ax, +by, +cz,)
X Yo 1

1.15.7 Plane through a point and normal to a line

Given n=ai+ bj+ck

Q(xg» Yo 2g) is on the plane with position vector q

P(x, y, z) is any point on the plane with position vector p
then n*(p—q) =0

or ax + by + cz — (axq + byg + czq) = 0

1.15.8 Plane through two points and parallel to a line

Given My yap zp) and  N(xy, Y 2y) Y

and theline p=r+ la T -

where a=xi+yj+zk b N

then b= (xy — xp)i + (yy — yw)j + (zy — zy)k x i

and aXb=n=ai+bj+ck /\

where a=|Ya %| p=|% *a| c=|* Ya| Z X
) 2, % X My

Plane equation is ax + by + cz — (axy; + byy + czy) = 0

1.15.9 Intersection of two planes

Given ax+by+cz+d =0
and ax + by +cz+d,=0
where n, =aji+ bj+ck
and n, = a) + byj + ¢k

The line of intersection is p = py + Anj

where n; =n; Xn, = asi + b3j + ¢k
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d b ¢ —d b, ¢
2|b, ¢ 1 b
_ 5 G 5 G
and X, =
DET
d, a; € —d, d4s €
)/ — al Cl a2 CZ
0 DET
d, a b —d|% b,
, a, b, la, b,
0 DET
al bl Cl
and DET = a, bz [
a, b, «,

If DET = 0 the line and plane are parallel.

1.15.10 Intersection of three planes

Y
Given ax+by+cz+d =0
ax+by+cz+d,=0
and asx + by + 3z +d; =0
P(x,y, z) is the point of intersection S
dl bl 51 a d1 4 7 X
dZ bZ CZ aZ d2 C2
d, b, c, a, d, c,
where x=- y=——
DET DET
al bl dl
a2 b2 dZ
a, b3 d3 a bl G
z=— DET =|a, b, c,
DET a, b3 c

If DET = 0, two of the planes, at least, are parallel.

1.15.11 Angle between two planes

Given ax; + by, +cz; +d; =0
and ax, + by, + cz; +d, =0
where n, =aji+bj+ck

and n, = a)i + byj + ¢k
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n, +n
a=cos!| —L 2
(I [ - ||, [

If o] = [lng]| =1 «

cos !(n; * n,)

1.15.12 Angle between a line and a plane
Given ax +by+cz+d=0
where n=ai+ bj+ck

and the line equationis p =t + Av

then a=cos! (&J
[In]] - {ml]

If|n|]|=|v]|=1 a@=cos"!(n+v)

When the line is parallel with the planen+v =10

1.15.13 Intersection of a line and a plane

Given ax+by+cz+d=0
where n=uai+bj+ck
and line p=t+Av

for the intersection point P

_ —(net+d)
"~ nev
Ifln]|=]v|]|=1 A=—-(n-t+d)

A

If n « v = 0 the line and plane are parallel.

1.15.14 Position and distance of the nearest point on a plane to a point
Given ax +by+cz+d=0
where n=uai+bj+ck

and Q is the nearest point on the plane to P

Position vector q = p + An

Distance PQ = ||An||
—(nep+d
where A= _—ptd
nen

If [n]| = 1 A=—(n+p+d)
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1.15.15 Reflection of a point in a plane

Given ax+by+cz+d=0
where n=ai+ bj+ck

and Q is P’s reflection.

Position vectorq = p + An
_ 2(n-.p+d)
nen

If[n]| =1 A= —2(np + d)

where A

1.15.16 Plane equidistant from two points

Given Pl(xp)’p 21) and Pz(xZ:yZ) 2,)

where P(x, y, z) is any point on the plane.
Plane equation is (p, —p,)«(p —1(p, +p,)) =0

or (x, =x)x+(y, = y)y+(z,—2z)z—
%(xj —x12+y§ —ylz +z§ —212)=0

1.15.17 Reflected ray on a surface

Given n the surface normal vector
s the incident ray

r the reflected ray

then r=s+ An
—2nes
where A=
nen

If[n]| =1 A= —2n-s
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1.16 Lines, planes and spheres

1.16.1 Line intersecting a sphere

Given a sphere with radius r centered at C with position vector ¢
and a line p=t+tAv

where [lv]| =1

Position vector p=t+ Av

where )\=s-vi\/(s-v)2—llsll2 + r?
and s=c—t

Miss (sev)?2—|Is|}+7r*<0
Touch (s*v)?>—|s|fP+7r=0
Intersect (s*v)>—|ls|P+7r>0

1.16.2 Sphere touching a plane

Given a sphere with radius r centered at P

and a plane ax +by+cz+d=0
where n=ai+bj+ck
then q=p+An
where /\=—M

nen
If[|n]| =1 A= —(n+p+d)

they touch at Q when |[An|| = r

1.16.3 Touching spheres

Given two spheres: radius r;, center C; (x¢y, Yo, 2¢1) and
radius r,, center C, (Xc, Yo Zc2)

d= \/(xcz - xc1)2 tWe, — }’c1)2 +(ze, — zc1)2

Intersect rntr>d>|rn -

Separate d>r +rn
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Touch d=rn+n
. T
_ 1 _
Touch point xp = xg + E(xc2 X,

h

Ip = Vot d U = Yer)

.
_ 1 _
Zp = zg E(zcz Ze))
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1.17 Three-dimensional triangles

1.17.1 Point inside a triangle

Given the vertices P, (X, ¥y, Z1,), P(%2, ¥2, 2,) and Ps(x3, y3, 23)
using barycentric coordinates we can write

Xg = &x; + Ax, + Bx;

Yo=ent Ay + Bys

zg = ¢€z; + Az, + Bzs
where e+t A+B=1

Py is within the boundary of the triangleife + A + 8 =1
and (g, A, B) € [0, 1].

1.17.2 Unknown coordinate value inside a triangle

Given the vertices P, P,, P; and a point Py(xg, ¥, 29) Where
only two of the coordinates are known, the third coordinate
can be determined within the boundary of the triangle using
barycentric coordinates. For example, if x, and z, are known
we can find y, using barycentric coordinates:

Yo =&y T Ay, + Bys

where
€ _ A _ 1
X, %, 1 X, 2, 1 x oz 1
x, z, 1 X, Zy 1 X, z, 1
X, 24 1 Xz 1 X,z 1

P, is within the boundary of the triangleife + A + B =1
and (g, A, B) € [0,1].
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1.18 Parametric curves and patches

1.18.1 Parametric curve in R?

A parametric curve in [R? has two functions sharing 1
a common parameter, with each function having 038

independent control over the x and y-coordinates. 06
0.4

0.2

¥ f(t)} te [tm'm’ tma.x]
y =g -02
—-04
oo = 27
t
a=1———
tmax
eg. x=t tefo, t ]
Yy = acost

1.18.2 Parametric curve in R3

A parametric curve in [R> has three functions sharing a
common parameter, with each function having independent
control over the x, y and z-coordinates.

x = f(t)
y=8@®)p telt ¢t 1
z = h(t)
X = cost

e.g. y =sint o t e[0, 4]
z=t

1.18.3 Planar patch

Given P00, Pl()’ Pll’ P()l in RZ or Rs that fOI’m a patCh

P, =(1—v)[1—uP, +uP |+ v[1—wP, +uP,]

where (u, v) € [0, 1].

In matrix form

SR N | ] B H
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1.18.4 Modulated surface

A function can be represented as a modulated
surface by making the function’s value modulate
one of the Cartesian coordinates of the surface.

XN
723\ 72\
= N 2\
e ) = sfu(lj(ca’czj- z)} (x,2) € [, 7] " ;%“\:%t\i:gg:z’l”’/’/’/”’;.}g;
& g ’ ’ -05 \\\\\\\\\\\‘\g"ll’ 17 77/ 77 2
N\
277

1.18.5 Quadratic Bézier curve

Given two points (x;, y;) and (x,, ¥,) and a control point Y
(xc yc) a quadratic Bézier curve has the form: b

p(t) = p,A— 1)’ +p 2t(1— 1)+ p,t’

1 -2 1
or pt)y=[t* ¢t 1]]-2 2 0©
0 0

1.18.6 Cubic Bézier curve

Given two points (x;, ;) and (x,, y,) and two control points YA
(xc yc) and (xp, yp) a cubic Bézier curve has the form: Pc

p(t) = p,(1—1) +p. 3t 1) +p, 321 —1) +p,t’

-1 3 -3 1|| P, X
143 42 3 —6 3 0|lP
or pt)=[t ¢t t 1] 3 3 0 0 Pg
1 0 0 0fp,
1.18.7 Quadratic Bézier patch
2 2
Definition p(u,v) = ZZBi,Z(u)Bj,Z(V)pi,j

i=0 j=0
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where B ,(w) = (f) u'(1—u)*" and Bj’Z(V) = G )Vj a—vy’
. 2 2 Py Po Pp (I_V)Z
as a matrix paw,v) =[Q—u)" 2u(l—u) u"] Py Py Pp 2v(12—v)
| P Py Pp |l Y
, 1 =2 1]|Py Py Po|[ 1 —2 1]|+?
or pwv)=[u" u 1]|—2 2 0 Po Py P2 2 Offv
1 0 0 [Py Py Pn |l 1 0 0 1
1.18.8 Cubic Bézier patch
3 3
Definition pwv) =D Y Bl.)3(u)Bj,3(v)pi,].
i=0 j=0
where B j(u) = (?) ud-u)®" and B].)z(v) = (?J vi@-vy*
as a matrix
Pow Po Py Pg (1(— V)3)2
W) =[0-u’ 3ul-u’ 3u’0-u) o*)|Po Pu Po Py 3vll=v
P Py Pxu Ppn Py 3V2(13— V)
Py, P3 Py Psy v
or
-1 3 =3 1||Py Py Py Pis|[-1 3 -3 1{+
1,3 2 3 —6 3 0P P P P 3 —6 3 042
u,v) = |u u u 1 10 11 12 13
plw,v) = ]—3300p20p21p22p23—33001;
b0 0 0lpy by Py P fl 10 0 0J1
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1.19 Second degree surfaces in standard form

Sphere Ellipsoid

Py +Z=r

Elliptic cylinder
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Elliptic hyperboloid of two sheets




2 Examples

Example is the school of mankind, and they will learn at no other.
Edmund Burke (1729-1797)

This section, like the previous section, is organised into 19 groups:

2.1 Trigonometry

2.2 Circles

2.3 Triangles

2.4 Quadrilaterals

2.5 Polygons

2.6 Three-dimensional objects

2.7 Coordinate systems

2.8 Vectors

2.9 Quaternions

2.10 Transformations

2.11 Two-dimensional straight lines
2.12 Lines and circles

2.13 Second degree curves

2.14 Three-dimensional straight lines
2.15 Planes

2.16 Lines, planes and spheres

2.17 Three-dimensional triangles
2.18 Parametric curves and patches
2.19 Second degree surfaces in standard form

The following examples illustrate how geometric formulas are used in practice. Hopefully, the
reader will see the advantages of using unit vectors, and the difference between using
parametric equations and the general form of line equations and plane equations. There is no
one strategy that overall is superior to another - much will depend upon the context.

73
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Vectors

Vector notation provides a very compact way of expressing the solution to a geometric problem.
For example, the formula for calculating the intersection of a line and plane is given by

p=t+Av
—(net+d
where )\:M
nev

The position vector p identifies a point P where the line intersects the plane. Therefore, the
coordinates of P are given by

X, = x; + Ax,
Yo=Yt Ay,
z,=z; t Az,

This sort of ‘coordinate unpacking’ is used throughout the examples in this section.
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2.1 Trigonometry

Examples of cofunction identities

sina = cos(% — a)z cos B sin 30° = cos 60° = 0.5
— a — o 1
tana = cot| - —a |= cot B tan45° = =1
2 tan 45°

1 1

sin30°  cos60°

csca = sec(%—a)= sec 8

Examples of even—odd identities

sin(—a) = —sina sin(—30°) = —sin 30° = —0.5
cos(—a) = cos a cos(—60°) = cos 60° = 0.5
tan(—a) = —tan o tan(—45°) = —tan45° = —1

Examples of Pythagorean identities

sinfa + cos’a =1 sin®30° + cos®30° = 14+3=1
2., — 2 T 1 _
1 + tan“a = sec’« 1+ tan“45° = > =2
cos” 45°
2 2 2 g0 1 _
1+ cota = csc*a 1+ cot”45° = ) =2
sin” 45°

Examples of compound angle identities

sin(a + B) = sin « cos B + cos a sin B sin(10° + 20°) = sin 10° cos 20°
+ cos 10° sin 20° = 0.5

cos(a + B) = cos a cos B — sin a sin B cos(10° + 50°) = cos 10° cos 50°
— sin 10° sin 50° = 0.5

t +t tan 20° + tan 25°
tanaFtanp tan(20° + 25°) = 207

tan(a + B) =
A 1—tana tan 3 1 — tan 20° tan 25°
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Examples of double-angle identities

sin 2a = 2 sin « cos «

cos2a=1-—2sina

cos 2a = cos’ a — sin® «
2tana

tan2e = ————
1—tan” B

Examples of multiple-angle identities
sin 3a = 3 sin @ — 4 sin® «
cos3a=4cos’a —3cosa

_ 3tana — tan’

tan3a = >
1—3tan”«

sin 4a = 4 sin & cos & — 8 sin® & cos «

cosda = 8 costa — 8costa + 1

4tana —4tan’a

tan 4«

1—6tan’a + tan* o
sin 5a = 16 sin® @ — 20 sin®> @ + 5 sin &

cos 5a = 16 cos® @ — 20 cos®> & + 5 cos «

5tana —10tan’ @ + tan’ &

1—10tan’ @+ 5tan &

tan 5«

Functions of the half-angle

.« /l—cosa
sin—==+,[——
2 2

«a 1+ cosa
cos—=t,/—
2 2

« 1—cosa
tan— =+, [——
2 1+ cosa

sin 30° = 2 sin 15° cos 15° = 0.5
cos 60° =1 — 2sin% 30° = 0.5

cos 60° = cos® 30° — sin? 30° = 0.5

2 tan 22.5°
tan45° = _2tan225° 1

1— tan® 22.5°

sin 30° = 3 sin 10° — 4 sin® 10° = 0.5
cos 60° = 4 cos> 20° — 3 cos 20° = 0.5

3tan15° — tan’15° ]
1—3tan’15°

tan45° =

sin 30° = 4 sin 7.5° cos 7.5°
— 85in?®7.5° cos 7.5° = 0.5

cos 60° = 8 cos* 15° — 8 cos? 15° + 1 = 0.5

4tan15° — 4 tan® 15°
1—6tan®15° + tan?15°

tan 60° =

= 1.732051

sin 30° = 16 sin® 6° — 20 sin® 6° + 5 sin 6° = 0.5

cos 60° = 16 cos® 12° — 20 cos’ 12°
+ 5cos 12° = 0.5

5tan9° —10tan’ 9° + tan’ 9° .
1—10tan® 9° + 5tan* 9°

tan45° =

1— 60°
§in30° = +, |- 5% — +q5
2
1+ 120°
cos60° = £, /L ==*05
2
1— 90°
tan45° = &, |— " — 4
1+ cos90°
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Functions converting to the half-angle tangent form

o
2tan—
sina =
a
1+ tan® —
2
o
1—tan® —
cosa =
o
1+ tan® —
2
o
2tan —
tana = 2
a
1—tan’ =
2

Relationships between sums of functions

sina +sin 3 = Zsm(MJ Cos(ﬂ]
2 2

sh1a—sinB=2cos(a+'8Jsin(a_BJ

2 2

cosa+cosB=2cos(a+ﬁ)cos(a_ J
2 2

cosa—cosB=—25in(a+’8)sin(a_’BJ
2 2

sin(a + B)

tana +tan 3 =
cos & cos 3

sin(a —
tana —tan 3 = u
cos & cos 3

2tan15°
sin 30° = LZS =05
1+ tan” 15°
1 — tan” 30°
Cos60° = - =05
1+ tan” 30°
2tan22.5°
tan 45° = an—z =1
1— tan? 22.5°

sin 30° + sin 30° = 2 sin 30° cos 0° =

sin 60° — sin 30° = 2 cos 45° sin 15° = 0.366

cos 60° + cos 60° = 2 cos 60° cos 0° =1

cos 60° — cos 30° = —2 sin 45°sin 15° = —0.366

in 90°
tan45° + tan45° = — 02— 5
cos 45° cos 45°
115
fan60° — tan 45° = — 1" _ 73
€0s 60° cos 45°
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2.2 (irdes

Example: Properties of circles

Circle

Area of circle

Perimeter

Length of arc

Area of sector

Area of segment

Length of chord

A = 7r?
C=md
s= wd
360°
ar?
360°
2
r_(a[rad] —sin a[md])
2

e
c = 2rsin—
2

A= 72%=1257

C=1m4 =12.57
s= 0 74 = 4.19
360°
w4 = 2.09
360°

é[zw_ﬁ]:m
2

2(3

¢ = 4sin 60° = 3.46
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2.3 Triangles

2.3.1 Checking for similar triangles

Triangles A and B are similar because three corresponding sides are in the same ratio:

20 10

Triangles C and D are similar because two corresponding sides are in the same ratio, and the

included angles are equal: % = % = 2 and the included angles equal 30°.

30°

20 10

Triangles E and F are similar because two corresponding angles are equal.

30° 55¢

2.3.2 Checking for congruent triangles

Triangles A and B are congruent because three corresponding sides are equal.

20 20
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Triangles C and D are congruent because two corresponding sides are equal, and the included
angles are equal.

16 16
C D
300 300

20 20

Triangles E and F are congruent because one side and the adjoining angles are equal.

30° 55°¢ 30° 55°
20 20

2.3.3 Solving the angles and sides of a triangle

Use the sine rule to find angle a.

16 14
16 14
sina  sin30° 30° &
. 16 .
sina = — sin 30°
14
a=sin| Csin30e | = 3485
14
Use the cosine rule to find side a.
a® = 20% + 16°> — 2 X 20 X 16 cos 30° 16 a
a*> = 400 + 256 — 720 cos 30° 300
a=>57 20
Use the tangent rule to find side b.
b a
+
tan « B
a+b _ 2 «a B

a=b tan(a_’B)
2

a=3 a = 36.87° B = 53.13°
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3+b  tan4° 1
3—b  tan(-8.13°) —0.14285

3+b=-73—-b) -.b=4

Given a — b use Mollweide’s rule to find side c.
. |a—p
sin| ——— A
a—b ( 5 J 110

Cc
COoS (yj
2 30° 40°

a—-b=2 a=40° B=30° y=110°
2805 _ 15195
¢ co0s55°
c=13.162

Given a + b use Newton’s rule to find side c.

a—p
cos 0
v 37

C
sin [y)
2 30° 40°

a+b=16 a=40° B=30° y=110°

16 _ cosS 451613
c sin 55°
¢ = 13.15648

2.3.4 (alculating the area of a triangle
Use Heron’s formula to calculate the area of a triangle.

a=\8 b=2 =2

8§+2+2
Semiperimeter s = \/7# =2+ \/E

0~

Area = \/s(s —a)(s—b)(s—c)

= Je+\e+V2 B2z

Area = 2

c 2 X
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Use a determinant to calculate the area of a triangle. YA Cc2,3)
1 X, Y 1
Area AABC = Hxg yp 1
X Ve 1
A(l, 1 B3, 1

111 (1,1 (3, 1)

Area=1|3 1 1 >

12 31 X

=Ll1+2+9-3-3-2)=2

Reversing the vertex order:

1 11
Area=% 2 31
311

=13+3+2-1-2-9) =—

2.3.5 The center and radius of the inscribed and circumscribed circles for a triangle

Calculate the center of the inscribed circle for triangle ABC.

a=\/§ b=2

c=2

A = (0,0) =(2,00 C=1(0,2)

. zaxA-l-be-i-cxc

M a+b+c

y :ayA+byB+cyC

M a+b+c

. _8x0+2x2+2x0_ 4 X

M Js+2+2 4++8

, _J8x0+2x0+2x2 _ 4

M J8+2+2 VN
Position of the center

Calculate the radius of the inscribed circle for triangle ABC.

f+2+2 _f+2

_ \/(s —a)(s—b)(s —c)

N
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r:\/(ﬁﬂ—ﬁ)(ﬁ)(ﬁ)
V2 +2

r=2-+2 = 05858
r=0.5858  xy = 05858  y = 0.5858

Calculate the radius of the circumscribed circle for triangle ABC.

a=\8 b=2 c=2
A=(0,00 B=(20) C=(0,2)

_ abe :\/Exzxzz\/z
4 X Area AABC 4X2

Calculate the center of the circumscribed circle for triangle ABC.

xpzxA+a—I;C ii; lc’j
R =
ol 4
" aald 4
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2.4 Quadrilaterals

Example: Calculate the area of a quadrilateral.
a2
b =10 P

c=2 ’
d=120 S T

AC:d1:4

0.9 d B
BD:dZZ\/ﬁ AN\ 45° /C
atb+c+d @ P

s =————— =>55243
2

By inspection
AABO =1
ABCO =1
ACDO =2
ADAO =2

therefore Area ABCD = 6.

Here are four ways of computing the area:

dldz i 4\/7 in 45° = 6 \/7£—6
2

sinf =

Area =

Area = i(b2 +d*—a® —c*)tan = L(10+20-2-4)tan45° =6

Area = %\/4d12d22 — B+ d*—a* =)

=%\/4><16><18—(10+20—2—4)2 =

Area = \/(s —a)(s — b)(s — ¢)(s — d) — abcd cos* &

+B  7157°+10843°
g=2 ; B_ : = 90°

Area = \/ 4.1101 X 2.3620 X 3.5243 X 1.0522 — 40 cos* 90° = 6

It just so happens that the quadrilateral is a cyclic quadrilateral.
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Example: Calculate the center and radius of the circumscribed circle for a rectangle.

YA )
/ \UBG,3)
| ¥ \
D(O, 2)‘\‘ |
\ R
A

X
PA:(lrl) PB:(3>3) PC:(2s4) PD:(O)Z)
The center of the circumscribed circle is

Xp =%(xA+xC) Yp :%(}IA—F)/C)

x, =11+2)=15 yp=10+4)=25

The radius of the circumscribed circle is

R= %\/(xB —x, ) @y, = x )~y

RI%\/(3—1)2+(3—1)2+(3—2)2+(3—4)2 = L0

The circle has a radius of %\/B with a center at (1.5, 2.5).
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2.5 Polygons

Example: Determine the internal angles of a polygon

The internal angles of an n-sided polygon sum to (n — 2) X 180°.

Triangle (n = 3) Quadrilateral (n = 4)
as
@ @z
3 4
> =180° D> a; = 360°
i=1 i=1
Pentagon (n = 5) Hexagon (n = 6)

Example: Determine the alternate internal angles of a cyclic polygon

The alternate internal angles of an n-sided cyclic polygon sum to (n — 2) X 90°
[#n = 4 and is even].

Cyclic quadrilateral (n = 4) Cyclic hexagon (n = 6)

o + a3 = a, + ay = 180° o+ ozt as=a, + ay + ag = 360°
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Example: Calculate the area of regular polygon

T
Area = ins2 cot —
n
where 7 = number of sides
s = length of side
Lets =1

Area

0.433
1
1.72
2.598
3.634
4.828

O NN WX

Example: Calculate the area of a polygon

The figure shows a polygon with the following YA
vertices in counter-clockwise sequence
3 O
x 0 5 5 2
2 1 3 2
I P N R
By inspection, the area is 10.5 1 5 3 i; 3 X

The area of a polygon is given by

n—1

— 1 —
Area = 5 2 (xiy,'ﬂ(mod n) yixiﬂ(mod n))
i=0

Area=%(OX0+2><1+5><3+5><3+2><2—2><2—0><5—1><5—3><2—3><0)

Area = %(36 —15) =10.5
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2.6 Three-dimensional objects

2.6.1 Cone, cylinder and sphere

Example: Area and volume of a cone, cylinder and sphere

Area (h=2r) (s = \l57) (r=1)
Cone arir+s)=(Q10+ \/E)WTZ 1+ \/g)7T
Sphere 4712 4ar
Cylinder 2arr(r + h) = 6mr 6m
Volume

Cone h wr’h = %’771’3 i
Sphere L i
Cylinder wr*h = 2mr? 27

2.6.2 Conical frustum, spherical segment and torus

Example: Area and volume of a conical frustum, spherical segment and torus

Circular, conical frustum

_ 2, .2
S=a(r +r +s(n +r1,))

S——

If n=2 r,=1 h=1 s=\/5
S=m@d+1+22+1)) = 2903 rl

V= 7Th(r12+r22+r1r2)

|4

1
3
lr@+1+2)=733

Spherical segment
S =2mrh
Ifr=1 h=1 $=6.28
V= éﬂ'h(SrI2 + 3r22 +h?)

Ifr,=0 r,=1 h=1 V=209
(half the volume)
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Torus
S = 47*R
Ifr=1 R=1 S =39.48
V = 27%R

Ifr=1 R=1 V =19.74

2.6.3 Tetrahedron

Example: Volume of a tetrahedron

Tetrahedron

LetA = (1,0,0) B=(0,0,1) C=

(0,1,0)

01
OOZL
1 0o °
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2.7 Coordinate systems

2.7.1 Cartesian coordinates in [R?

Example: Distance in R?
Find the distance between the points (12, 16) and (9, 12).

Given d = (e, = %)+ (0, — )’
_ o\ _ 7
therefore d= \/(12 92 +(16—12)> =/9+16
d=>5

2.7.2 Cartesian coordinates in R3

Example: Distance in R?
Find the distance between the points (12, 16,22) and (9, 12, 20).

GiVen d = \/(xz - x1)2 +()’2 _)/1)2 + (ZZ - Zl)2

d= \/(12 —9)* + (16 —12)* + (22 — 20)°

therefore =49+16+4 = \/5
d = 5.39

2.7.3 Polar coordinates

Example: Conversion between Cartesian and polar coordinates

Find the polar coordinates (r, 0) for the points (4, 3), (—4, 3), (—4, —3) and (4, —3).

Given r=4x"+y

and 6 = tan™! [%) (1st and 4th quadrants only)
For (4, 3) r=A+16+9 =5
3
and 0 = tan 1= 36.87°
(4,3) = (5,36.87°)
For (—4, 3) r=>5
and 0 = 180° — 36.87° = 143.13°

(—4,3) = (5,143.13°)
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For (—4, —3) r=>5

and 6 = 180° + 36.87° = 216.87°
(—4, —3) = (5,216.87°)

For (4, —3) r=>5

and 0 = —36.87° or 323.13°

(4, —3) = (5,323.13°)
Find the Cartesian coordinates (x, y) for the point (5,216.87°).

Given x=rcos0
and y=rsinf
For (5,216.87°) x =5¢c0s216.87° = —4
and y =5sin216.87° = —3

(5,216.87°) = (—4, —3)

2.7.4 (ylindrical coordinates

Example: Conversion between Cartesian and cylindrical coordinates

Find the cylindrical coordinates (r, , z) for the points (4, 3,4), (—4, 3,4), (—4, —3,4) and
(4, —3,4).

Given r=x*+y

0= tan_l[l) (1st and 4th quadrants only)

and z=2z

For (4, 3,4) r=+16+9 =5

3
0= tanl(Z] = 36.87°

and z=14

4,3,4) = (5,36.87° 4)
For (—4,3,4) r=5

0 = 180° — 36.87° = 143.13°
and z=14

(—4,3,4) = (5,143.13°,4)
FOI'(_4, _3:4) r=25

0 = 180° + 36.87° = 216.87°
and z=14

(—4, —3,4) = (5,216.87°4)
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For (4, —3,4) r=>5
6 = —36.87° or 323.13°
and z=4

(4, —3,4) = (5,216.87°,4)

Find the Cartesian coordinates (x, y, z) for the point (5,216.87°,4).

Given x =rcosf
y=rsinf
and z=1z

For (5,216.87°,4) x = 5c0s216.87° = —4
y = 5sin216.87° = —3
z=4
(5,216.87°,4) = (—4, —3,4)

2.7.5 Spherical coordinates

Example: Conversion between Cartesian and spherical coordinates

Find the spherical coordinates (p, 6, ¢) for the points (4, 3,4), (—4,3,4),(—4, —3,4) and (4, —3,4).
Given p=+x*+y +7

6= tanl(lj (1st and 4th quadrants only)
x

1 VA

’xz +y2+Z2
For (4,3,4) p=16+9+16 = /41 = 6403

and ¢ = cos

1

0 = tan™ = 36.87°

| W

and ¢ = cos™! LISV
6.403

(4,3,4) = (6.403,36.87°, 51.34°)

For (—4,3,4) p = 6.403
6 = 180° — 36.87° = 143.13°
and ¢ = 51.34°

(—4,3,4) = (6.403,143.13°,51.34°)
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For (—4, —3,4)
and

For (4, —3,4)
and

p = 6.403
6 = 180° + 36.87° = 216.87°
¢ = 51.34°

(—4, —3,4) = (6.403,216.87°, 51.34°)
p = 6.403
6 = tan"! (_73) = —36.87° = 323.13°

¢ = 51.34°
(4, —3,4) = (6.403, 323.13°,51.34°)
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2.8 Vectors

2.8.1 Vector between two points

Given

2.8.2 Scaling a vector

Given
scale by 3

2.8.3 Reversing a vector

Given

2.8.4 Magnitude of a vector

Given

P((1,2,3) and P,(4,6,8)
. X, — X 3
PP=a=|y, =y |=|4

z, —z 5

2 1

a=3i+4j+ 5k

a=3i+4j+5k
3a = 9i + 12j + 15k

a=3i+4j+ 5k
—a= —3i—4j — 5k

a=3i+4j+ 5k

lla]|= V3* + 42 + 5 = /50 = 7.071

2.8.5 Normalizing a vector to a unit length

Given

check

2.8.6 Vector addition/subtraction

Given

a=3i+4j+ 5k

BN ST
Js50 V500 V0

a= = 0.424i + 0.566j + 0.707k

A 9 16 , 25
lall= oo+ 5 2o =1
50 50 50

a=3i+4j+5k and b=2i+4j+ 6k
a+b=5+8+ 11k
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2.8.7 Position vector

Given a point (3,4, 5) its position vector is 3i + 4j + 5k.

2.8.8 Scalar (dot) product

Given a=3i+4+5k and b=2i+4j+6k
a*b=3X2+4X4+5X6=52

2.8.9 Angle between two vectors

Given a=3i+4+5k and b=2i+4j+6k

Let a be the angle between a and b.

lall=V3* +4* +5 =50 and [[bl|=v2 +4 +6* =56

o = cos”! xX,x, Ty y, T2z,
llall-[IbI

4| 3X2+4X4+5X6 1 52 5
a = COos = Cos — | = 10.67
50+/56 52915

2.8.10 Vector (cross) product

Given a=3i+2j+5k and b=i+j+8k
ijk
aXxb=|3 2 5|=11i-19j+k
1 1 8

11i — 19j + kis orthogonal to a and b.

Remember that axXb#bXa
i j k

Proof bXa=|1 1 8|=-11i+19j—k
3 2 5

—11i + 19j — ks still orthogonal to a and b but is in the opposite direction to
11i — 19j + k.
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2.8.11 Scalar triple product

a=2j+2k b = 10k c=5i

Given
xa yll Z(l
as(bXo)=|x, y, z
xC yC ZC
0 2 2
Volume = a+(bXc¢)=|0 0 10|=100
50 0
2.8.12 Vector normal to a triangle
Given P,(5,0,0)  P,(0,0,5)  P4(10,0,5)
X, TN X3 T X
a=\y,=n b=y -y
5HT4 2374
a= —5i+ 5k b =5i + 5k
i j k
n=aXb=|-5 0 5|=50j
5 0 5
Surface normal n = 50j
2.8.13 Area of a triangle
Given P,(5,0,0)  P,(0,0,5)  P5(10,0,5)
XX X T X
a=|y, " n b=y, =
574 2374

a= —5i+ 5k b = 5i + 5k

—1 -1
Area = 7 |[a X b][=1

Area = 25
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2.9 Quaternions

2.9.1 Quaternion addition and subtraction

QTR =[51Ts) +x Ex)i+ (Tt (z * z))k]

Given q; = [1+ 2i + 3j + 4K]
and qy = [1 —1i+2j+ 5kK]
then q +qy=[2+1+ 5+ 9K]

2.9.2 Quaternion multiplication

Q19 = [(818; = Vi*V2), 51V, + 5,1 + v X v]

Given q = [1 +1i]
and qy = [1 +]j]
then qQqq=[1+i+j+K]

2.9.3 Magnitude of a quaternion

lqll = s + x> + y* + 22
Given q; = [1 + 2i + 3j + 4K]

then llg, |l = V1* +2% +3% + 4% = J30

2.9.4 The inverse quaternion

_ [s —xi— yj— zK]
gl =2 A7=C

lla, I
Given q; = [1 + 2i + 3j + 4K]
then q ' =LM-2i-3j—4kl=[5—-Li-Lj—2K]

2.9.5 Rotating a vector
Rotate pusing p’ = qpq ' where q = [cos(%), sin(%)f/]

Let p be the quaternion for (1,0,0) i.e.p = [0 + i]
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Let q be a unit quaternion aligned with the z-axis which rotates p 180°

ie. q = [cos 90°,sin 90°(k)] = [0 + K]

then q'=[-Kk]

but llall =1

therefore p =[0+Kk]-[0+i]-[0—Kk]=[0+j]-[0—Kk]=1[0—1i]

[0 — i] points to the rotated point: (—1, 0, 0), which is correct.

2.9.6 Quaternion as a matrix

sS+x’—y -7 2(xy — sz) 2(xy + sz)
R(O) = 2(xy + s2) ss+y —x*-72° 2(yz — sx)
2(xz — sy) 2(yz + sx) ss+z22—xr -y

Let’s express the previous rotation quaternion as a matrix:
Given [0+Kk] then s=0, x=0, y=0, z=1

-1 0 O
therefore RO=[0 -1 0
0 1

~1] [-1 o o] [1
ol=|0o -1 0|0
then 0 o o 1| |o

which confirms the previous result.



Examples

99

2.10 Transformations

In the following examples the coordinates of the original shape A are shown on the right-
hand side of the transform enclosed in brackets, whilst the coordinates of the transformed

shape A" are shown on the left-hand side.

2.10.1 Scaling relative to the origin in R

Scale shape A by a factor of 2 in the x-direction and
1 in the y-direction relative to the origin.

i x' Sx 0 0 x
y1=|0 S, Of-1y
| 1 0 0 1 1

A Transform

2.10.2 Scaling relative to a point in R

Scale shape A by a factor of 2 in the x-direction and
1 in the y-direction relative to the point (1, 0).

Vx’ Sx 0 Xp a- Sx) x
YI=10S, ypU=8)|- |y
0 0 1 1

A Transform

2.10.3 Translation in R?

Translate shape A by 1 in the x-direction and 1 in the y-direction.

[ x' 1 0 Tx x
y =101 Ty |y
1 00 1 1

A Transform

[2 3 1 0 1] [1
11 3|=0o1 1]-]0
11 00 1| |1

— W
—oNn >

— NN
|

[\ (ST

—_

v~

—_

W~

(3]

Al
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2.10.4 Rotation about the origin in [R2

Rotate shape A 90° about the origin.

[ x' cosae —sina 0 X
y' |=|sine cosa O y
1 0 0 1 1
) A Transform A
0 0 —2 0 -1 0 1 2 2
1 2 2|=|1 0O 0 0 2
1 1 1 0 01 1 11
2.10.5 Rotation about a point in R2
Rotate shape A 90° about the point (1, 0).
[ X cosa —sina  x,(1—cosa)+ y,sina
y'|=|sina cosa y,(1—cosa)—x,sina
| 1 0 0 1
) A Transform A
1 1 -1 0 -1 1 1 2 2
01 1f=|1 0 -1 0 0 2
11 1 0 0 1 1 11
2.10.6 Shearing along the x-axis in R
Shear shape A 45° along the x-axis.
[ x' 1 tana 0 X
y' =10 1 o-{y
1 0 0 1 1
) A Transform A
0 2 4 2 1 10 02 20
00 2 2|=]01 0 00 2 2
1 1 11 0 01 1 111

—_\ R

Y
2
AI
1
A
=2 -1 1 2 X
Y
2
A’ A
\ C—
-2 -1 1 2 X
Y,
3
2
A A’
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2.10.7 Shearing along the y-axis in [R2
Shear shape A 45° along the y-axis. Y
3 :

[ x' 1 0 0] [« ﬂ

Yy |=|tana 1 0 y 2 ‘ ;

1 0 01 1 A’ i

L . (

) A Transform A A |

0220 1000220

0 23 1|=|110[-[00T11 DR

1 1 11 0 0 1 1 1 11

2.10.8 Reflection about the x-axis in [R?

Reflect shape A about the x-axis.

1 00 x
“1=10 -1 of-|y
0 01 1

=
Il

A’ Transform

02 2 1 00 0
00 —-1|=|0 -1 O0f-[O
1 1 1 0 01 1

—oN >
—_— N

2.10.9 Reflection about the y-axis in R?

Reflect shape A about the y-axis.

xl

-1 0 O X
yi=|1 01 0|-|y
1 0 01 1
) A Transform A
-1 -2 -2 -1 0 0 1 2 2
0 0 2= 0 1 0|-]0 0 2
1 1 1 0 0 1 1 11

4
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2.10.10 Reflection about a line parallel with the x-axis in [R2

Reflect shape A about the line y, = 2. Y
3
(x] [1 o o] [x] v A
YyI|=10 -1 2y, [-|» A’
1] [0 o 1 1| |
) A Transform ) A
2 4 4 1 0 0 2 4 4 1 2 3 4°X
2 2 1(=]0 —1 4 2 2 3
1 11 0 01 1 11
2.10.11 Reflection about a line parallel with the y-axis in [R2
Reflect shape A about the line x, = 2. Y
3
[ x' -1 0 2xP x i 2
yl=l o1 o y v .
1 00 1 1 | !
) A Transform A
200 -1 0 4| |2 4 4 o3 4X
1 1 2|=( 01 0 1 1 2
1 1 1 0 0 1 1 11
2.10.12 Translated change of axes in R
The axes are subjected to a translation of (2, 1). Y v
3
[ x' 1 0 Xp x )
b il L S ' B
1 00 1 1 1
) A X'
) A Transform A A
-1 0 0 1 0 —2 1 2 2 1 2 3 4 X
-1 -1 1{=|10 1 —1{(-]0 0 2
1 11 11 1 1 11
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2.10.13 Rotated change of axes in R?
Rotate the axes 90°. Y
3
[ x' cosa sina 0 x| Xé
y'|=|—sina cosa O y
1 0 0 1 1 ,
L | i A
) A Transform ) A A
0 0 2 01 0| [1 2 2 Y [ 1 2%
-1 -2 —2|=[-1 0 0 00 2
1 1 1 1 11 1 11
2.10.14 The identity matrix in R?
[x] [1 0 o] [x Y
y' =10 1 0 y 3
1 0 0 1 1
n 2
) A Transform A
1 2 2 1 0 0 1 2 2 1 A’
0 0 2|=(0 1 O 00 2 / A
1 11 0 0 1 1 11
L 2 34X

2.10.15 Scaling relative to the origin in R

Scale shape A 1.5 in the x-direction, 2 in the y-direction
and 2 in the z-direction.

x’ SxO
yl=|0 s,
z 0 0
[ 1 0 0
»A,

03 3 15
22 4|_|o
2 2 2 0
111 0

0 O X
0 04 |y
S 0 z
0 1] [1
Transform
0 0 0
2 00
0 2 0
0 0 1

—— O
—_— N D>
—_—— N N
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2.10.16 Scaling relative to a point in R

Scale shape A 1.5 in the x-direction, 2 in the y-direction
and 2 in the z-direction relative to the point (0, 1, 1).

] S, 0 0 x,0-S)] [«
)/, _ 0 Sy 0 yP (1 - Sy) y
z 0 0 S 2z0-S)]| |z
| 1 0 0 1 1
) A’ Transform A
0 3 3 15 0 0 0 0o 2 2
1 1 3|{_({0 2 0 —1 1 1 2
1 11 0 0 2 -1 1 1 1
(1 1 1] [0 00 1] |1 11
2.10.17 Translation in R3
Translate shape A by (2, 2, 3).
w1 [t oo 7] [«
ylofo 1t o1ty
Z1 o011 T, |z
| 1 000 1 1
) A’ Transform A
2 4 4 1 0 0 2 0 2 2
2 2 4(_(0 1 0 2 0 0 2
3 3 3 0 01 3 0 0 O
_1 1 1 0 0 0 1 1 1 1
2.10.18 Rotation about the x-axis in 3
Rotate shape A about the x-axis 90°.
[ x' 1 0 o ol [x
Yy 1_|0 cosa —sina Of |y
z' 0 sina cosa O z
(1] [0 o o 1] |1
) A’ Transform A
00 0 1 0 00 0 0 O
00 —2|_(0 0 -1 0 1 3 3
1 3 3 0 1 00 0 0 2
_1 1 1 0 0 0 1 1 1 1
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2.10.19 Rotation about the y-axis in R?

Rotate shape A about the y-axis 90°.

B% cosae 0 sina 0 x
y1_| O 1 0 O y
z' —sina 0 cosa O z
1 o o o 1] |1
) A’ Transform A
1 3 3 0 01 O 0 0 2
00 0Oj_| 01 0O 0 0 O
0 0 —2 -1 0 0 O 1 3 3
| 1 1 1 0 0 0 1 1 1 1

2.10.20 Rotation about the z-axis in 3

Rotate shape A about the z-axis 90°.

B% cosa —sina 0 O] [x

Yy |_|sina& cosa O Of. |y

z' 0 0 10 z

1 0 o 0 1] |1

) A’ Transform ) A
00 —2] o -1 0o0|[1 33
1 3 3(_|1 0 0 0| [0 O 2
00 0 0 01 0 0 0 O
11 1] [0 00 1] |1 11

2.10.21 Rotation about an arbitrary axis in R

HN\\< =

0 0 0
K=1—-cosa
Axisv=ai+ bj+ ck and |[v|]|=1

Givenv=Lk and o =90°

thenK =1
A’ Transform A
00 —2 0 -1 0 0 1 3 3
1 3 3|_[1 000 00 2
00 O 0 0 1 0 0 0 0
1 1 1 0 0 0 1 1 1 1

a’K +cosa  abK —csina acK +bsina 0
_|abK +csina b’K +cosa  bcK —asina 0
acK —bsina bcK +asine 2K +cosa 0

1

=N R
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2.10.22 Reflection about the yz-plane in R?

Reflect shape A in the yz-plane.

x' -1 0 0 O X
y1i_| 010 0f, |y
4 0010 z
1 000 1] |1
) A Transform A
0 =2 2] [-1 00 o] [0 2 2
1 1 3(_]1 01 0 0 1 1 3
1 1 1 0 010 1 11
1 1 1 000 1] |1 11
2.10.23 Reflection about the zx-plane in R®
Reflect shape A in the zx-plane.
[x] [1 00 o] [x
y|_{0 -1 0 Of. |y
z' 0 010 z
1] [0 o0 0 1] |1
) A Transform A
0o 2 2 1 0 0 O 0 2
-1 -1 =3|]_({0 -1 0 O 11
1 1 1 0O 01 0 1 1
1 1 1] |o o0 o0 1] [11
2.10.24 Reflection about the xy-plane in R3
Reflect shape A in the xy-plane.
[x] [1 0 o0 o] [x
yl1_10 1 0 Of. |y
A 00 -1 0 z
1] Joo o 1] |1
) A’ Transform A
o 2 2 1 0 0O 0 2
1 1 31_10 1 0 0 1 1
-1 -1 -1 00 -1 0 11
| 1 1 1 0 0 01 1 1

— - N

—_ 0 DN
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2.10.25 Reflection about a plane parallel with the yz-plane in R

Reflect shape A in the yz-plane x, = 1.

x' -1 0 0 2x, x
yi_]1 010 0 y
z' 0 01 0 z
1 000 1 1
) A’ Transform A
1 -1 1| [-1 00 2] [1 3 3
1 1 31_1 01 0 O 1 1 3
1 1 1 0 01 0 1 11
11 1 000 1] [111

2.10.26 Reflection about a plane parallel with the zx-plane in R®

Reflect shape A in the zx-plane y, = 2.

x' 1 00 O x

Yy 1=10 -1 0 2y, y

z' 0 01 z

| 1 0 00 1

) A Transform A

0 2 2 1 0 0 0 0 2 2
2 2 0|_|0 -1 0 4 2 2 4
1 11 0 01 0 1 1 1
11 1] o o0 1] |1 11

2.10.27 Reflection about a plane parallel with the xy-plane in R®

Reflect shape A in the xy-plane z, = 1.

x' 1 0 0 O x
Y101 0 0 y

z' 0 0 -1 2z, z

(1] {00 o 1] [1]

) A’ Transform A

0 2 2 1 0 0 0 0 2 2
1 1 3|_]01 00 1 1 3
0 0 0 00 -1 2 2 2 2
_1 1 1 0 0 0 1 _1 1 1
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2.10.28 Translated axes in 3

The axes are subjected to a translation of (2,0, 1).

[ ' 100 —x | [«
yl{_]10 1 0 ~Yr y
z' 00 1 —z z
1 000 1 1
) A Transform A
-2 -2 0 0 1 0 0 —2 0 0 2 2
0 0 0 0(_10 1 0 0 0 0 0 O
-1 1 1 -1 0 0 1 -1 0 2 2 0
| 1 1 1 1 0 0 O 1 1 1 11
2.10.29 Rotated axes in R
The axes are subjected to a rotation as illustrated.
—x’ T M 0 X
)’: |t T T O y
z o Tn T 0 z
| 1 0o 0 0 1| |!
) A’ Transform A
0 —2 —2 0 00 -1 0 0 0 2 2
0 0 0 0l_[0 1 0 0 0 0 0 O
0 0 2 2 1 0 0 0 0 2 2 0
_1 1 1 1 0 0 0 1 1 1 11
2.10.30 The identity matrix in R
A’ Transform A
0 2 2 1 0 0 O 0 2 2
1 1 2|_101 0 O 1 1 2
1 1 1 0 010 1 11
1 1 1 0 0 0 1 1 1 1
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2.11 Two-dimensional straight lines

2.11.1 Convert the normal form of the line equation to its general form
and the Hessian normal form

Given the normal form of the line equation

3
=—Zx+=
4 4 4

The general form of the line equation is obtained by rearranging the equation to
3x+4y—-5=0

The Hessian normal form is obtained be dividing throughout by the magnitude of the line’s
normal vector:

3x+4y—5 —0
V3T + 4

3 4
—x+—-y—1=0
5 5)’

The line intersects the x-axis at x = 12 and the y-axis at y = 1. The unit normal vector to the
line n = 0.6i + 0.8j and the perpendicular from the origin to the line is 1.

2.11.2 Derive the unit normal vector and perpendicular from the origin
to the line for the line equation3x + 4y + 6 = 0

The normal vector is n =3i+4j -X
. . . 1 c
The unit normal vectoris n = ———=(3i + 4j)
V32 + 4
= 0.6i + 0.8]
N lc] 6
The distance is d=——=—=12
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2.11.3 Derive the straight-line equation from two points

Normal form of the line equation

Given Pi(x;,y1) and  Py(xyy3)
and y=mx+c A Py
then m=22"N
XN
Pl
and —y _(u] ¥
X%
If the two points are P(1,0) and P,(3,4)
4—0 4—0
= +0—1| —
then 4 (3—1)x (3—1)
and y=2x—2
General form of the line equation
Given P(x1,y,) and  Py(xy,y,)
and Ax+By+C=0
then A=y,—»n B=x —x, C=—(x1y; — x3)1)
If the two points are P;(1,0) and P,(3,4)
then (4—0x+(1—-3)y—-(1X4-3X0)=0
and 4x—2y—4=0
or 2x—y—2=0

Determinant form of the line equation

lyl
1

X
x+ |71

Given ‘
Vs

If the two points are P(1,0) and P,(3,4)

10 1 1,1 0
el 1t
and 4x—2y—4=0

or 2x—y—2=0
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Hessian normal form of the line equation

Given 2y —a=0

The normalizing factor i \/a21+b2 ) \/161+ i \/270
then J%x_&y_ézo
and %x B %y B % -°

D PR
The normal unit vector to the line is n = T(Zl )]
5

The perpendicular from the origin to the line = %
5
Parametric form of the line equation
Given Pi(x,y1) and  Py(xyy,)
and P=p:tAv
and V=p,— P
If the two points are P;(1,0) and P,(3,4)
v=2i+4j
Therefore x=1+2A
and y =4
For example, whenA =0 x=1 y=0
and whenA=-05 x=0 y=-2

2.11.4 Point of intersection of two straight lines

Y
General form of the line equation [
Given ax+by+c=0
and ax +by+¢,=0 SN\
X
: &b — b, 96~ 45 XQT\
They intersect at X, =——F— = Ip T
ab, — a,b, ab, —a,b, 3
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Let the straight lines be 2x+2y—4=0 and 2x+4y—4=0

—4X2+4X4
Therefore Xp=———————— = 8 =2
2X4—-2X2 4

2X—4-2X—-4 0
and Vo= —————=-=0
2X4—-2X2 4

The point of intersection is (2, 0) as confirmed by the diagram.

Parametric form of the line equation

Given p=r+a q=s+¢eb Y
where r = xpi + ypj s = x5i + ygj
and a=x,d+yj b = x,i + yj S
S
then A= %, (s = ¥r) = 2 (% = %) r P
xbyu - xuyb \Q\ X
Point of intersection xp = xp + Ax, Yp=yrt+ Ay, NS N
Given r=j a=2i—j s=2j b=2i—2j b
_22-D+20-0) _2_,
2X(-1)—2X(=2) 2
Xp=0+2=2 yp=1+1X(=1)=0
The point of intersection is (2, 0) as confirmed by the diagram.
2.11.5 Calculate the angle between two straight lines
General form of the line equation
Given ax+by+e¢=0 ax+by+c=0
where n=aji+ bj m = a,i + byj
Angl a—cosl( n-m )
ngle = 0
® Il - m] A
Let the line equationsbe  2x +2y —4=10
and 2x+4—4=0
R
- 2X2+2X4 X
Therefore a = cos " \\p\ X
V22 42222 + 22 2
= 18435° N
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Normal form of the line equation
Given y=mx+c y=mx + ¢
1+mm,

Angle T

x
Let the line equationsbe y=—-x+2 and y= 5 +1

1
where 1 2 2

1+ (=D(=3)
Therefore a = cos = 18.435°

\/1+( 1+ (=)

Parametric form of the line equation

Given p=r+ia q=steb

Angle @ = cos ! (&]
llal - {1l

Let the line equationsbe p=r+Aa and q=s+¢b
where r=j a=2i—j s = —2j b =2i—2j

X 1) (—
Therefore a= COS1[L(1)(2)

V5

J: 18.435°

2.11.6 Test if three points lie on a straight line

Given P;(x;, y1), P,(x,, y,) and P5(x3, y3) YA

and r=ﬁ and s= PP,

The three points lie on a straight line when s = Ar.

Let the points be Py(0,—2)  Py(1,—1)  P;(4,2) P,/
Therefore r=i+j and s=4i+ 4j Py
and s = 4r

Therefore the points lie on a straight line as confirmed by the diagram.
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2.11.7 Test for parallel and perpendicular lines
General form of the line equation

Given ax+by+ec =0 ax+by+c=0
where n = aji+ bjj m = a,i + byj
The lines are parallel if n = Am.

The lines are mutually perpendicular if n + m = 0.

Given three lines Lyx—y+1=0 YA
Lyx—y=0
Lyx+y—2=0
Ly
L, and L, are parallel because the normal vectors to the lines are
LI

n=i—j and n,=i—j
and n; = /\nz (/\ = 1)
L, and L, are perpendicular because

nem=20 1X1+(-1)X1=0

Normal form of the line equation

Given y=mx+ ¢ y=mx + ¢,

The lines are parallel if m; = m,.

The lines are mutually perpendicular if m;m, = —1

Given three lines Li:y=x+1
Ly:y=x
Ly:y=—x+2

L, and L, are parallel because

m =my,=1
L, and L; are perpendicular because

myms = —1 1X(-1)=-1
Parametric form of the line equation
Given p=r-+Aia q=s+eb
where a=x,i+yj b = x,i + yij
The lines are parallel if a = kb.
The lines are mutually perpendicularifa+b = 0.

Given three lines p=r+ia q=s+eb u=t+fc
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where Li:a=i+tj
and Ly:b=i+j
and Ly:c=1i—j

L, and L, are parallel becausea = b
L, and L; are perpendicular because

XXe+ Yoy, =0 IX1+1X(—-1)=0

2.11.8 Find the position and distance of the nearest point
on a line to the origin

General form of the line equation

Given ax +by+c=0
where n = ai + bj
q=An
where A= —
nen
Distance 0Q = ||q]| = ||An]|

Given the line equation x+ty—1=0

where a= b= c=—1
Therefore A=1

and Xg=hx, =1y, =M, =1
The nearest point is Q (% ’ %)

Distance 0Q = 7 [In]| = 3+2 = 0.7071

Parametric form of the line equation

Given q=t+Av

Vet

where A=
Vev
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Distance 0Q = ||q|
Given the direction vectors t=j v=1i—j
=1
A=
— = 1 =1
Xo =% tAx, =0+ X1=1

Yo =Yt Ay, =1HIXED =1
The nearest point is Q (L L)

222

Distance 0Q = [t + Av|| = [I3i+ 3 jll = 07071

2.11.9 Find the position and distance of the nearest point on a line to a point

General form of the line equation

Given ax +by+c=0
where n =ai+ bj
q=p+An
nep+c
where A=-2"PTC
nen
Distance PQ = ||An]|
Given P(1,1) and x+y—1=0
then a=1 b=1 c=-—1
__2-1_
A== =
Therefore X = Xp T AX, =1-Ix1=1
Vo= Vp TNy, =1-1X1=1
The nearest point is Q(%,%)

Distance PQ = ||An]| = 1 [li + j|| = 0.7071
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Parametric form of the line equation

Given q=t+Av
ve(p—t
where A= vep-9
Vev
Distance PQ=|p—t—Av|
Given the direction vectors t=j and v=1i—j
and p=itj
=1
A=
= = 1_-1
Xo =% tAx, =0+5 =

— —1—-1_—-1
Yo =rrtAy, =1-5=75
222

The nearest point is Q ( 1 l)

Distance PQ=|lp—t—aAv|| =i+ 1j||= 07071

2.11.10 Find the reflection of a point in a line passing through the origin

General form of the line equation

Given ax+by+c=0
where n = ai + bj
q=p— An
\= 2(nep+c)
nen
Given the line equation x+y=0
where a=1 b=1 c=0 P(1,1)
2 X1
A=——=1
2
Therefore XQ=%xp—Ax,=0—-1X1=-1

Yo=Y~ Ay =1—-1X1=0
The reflection point is Q(—1,0)
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Parametric form of the line equation

Given

where

Given

Therefore

The reflection point is

s=t+Av
q=2t+ev—p

8:Zv-(p—t)
Vev

xP:() yp:l t=0 V:i_j

_2X(D) _
2

-1

€
Xq=2xrt+ex,—xp=2X0—-1X1-0=~-1
Yo=2yr+tey, —yp=2X0—-1X(-1)—-1=0
Q(_I:O)

2.11.11 Find the reflection of a point in a line

General form of the line equation

Given

where

Given the line equation

where

Therefore

The reflection point is

Parametric form of the line equation

Given

where

ax+by+c=0

n = ai+ bj
q=p~—An
)\:2(n-p+c)
nen
x+y—1=0
a=1 b=1 c=-1 xp=1 yp=1
Lo2x@e-n
2

XQ=Xp—Ax,=1—-1X1=0
Vo= Yp— Ay =1—-1X1=0
Q(0,0)

s=t+Av
q=2t+ev—p

8:2v-(p—t)

Vev
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Given xp=1 yp=1 t=j v=i—j
2 X1
e=—=1
2
Therefore Xq=2xr+ex,—xp=2X0+1X1—-1=0

Yo=2rt ey, —yp=2X1+1X(-1)—1=0
The reflection point is Q(0,0)

2.11.12 Find the normal to a line through a point
General form of the line equation

If line m is ax+tby+c=0

and line n is perpendicular to m passing through the point
p (xP’yP)

The line equation for 7 is —bx+ay+bxp—ayp=10

Given m is x+y—1=0

then a=1 b=1 xp=1 yp=1
Line n is —x+y=0

Parametric form of the line equation

Given line m q =t + Avand a point P
u=p— (t+ Av)

ve(p—t
where A= vep-b
Vev
line n is p + eu where € is a scalar.
Given v=i—j p=i+tj t=j

__ G=pei _ 1
(i—jeG—j) 2
W= G- (3G ) = i
Line n is n=(i+j)+s(%i+%j)=(1+%s)i+(1+%s)j

where ¢ is a scalar, which is equivalent to —x + y = 0.
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2.11.13 Find the line equidistant from two points

General form of the line equation

Given ax +by+c=0

Line n is x+y—1=0

Line m is given by (x, =x) x+(y, _)’1))’_%("5 —x12 +)’§ _ylz) =0

with Pi(0,1) and P,(1,0)

Line m is (1—0)x+(0—1)y—%(l—0+0—1)=0
x—y=0

Parametric form of the line equation

Given q=p+Av

where q =00 +x)= Ay, = yDi+ (L0, +2,) +Ax, — x)j
with P;(0,1) and P,(1,0)

Therefore q=(O+D=A0-1))i+(;A+0)+A1—0)

q = (L +Di+ (& +j

e.g.when A = 0 we have P(%,%) and when A = % the point is Q(1, 1)

This is equivalent to y=x or —x+y=0
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2.11.14 (Creating the parametric line equation for a line segment

YA

J AL,

X

P, (x1,y,) and P, (x,, ,) delimit the line segment and the parametric line equation is
given by

pP=qtAv
where q=xji+yj and v=(x;—x)i+ (¥, — y)j
Therefore xp = x; + A(xy; — x;)

yp=y1 T Ay, = y1)
Given P; (1,2) and P,(3,1). Pis between P, and P, for A € [0,1]
ie. xp=1+AB3—-1)=1+2A
Vp=2+A1-2)=2-2
For example, when A = 0.5

X

1
2

=2 and y, =15
2

2.11.15 Intersecting two line segments

YA

P, P,

r/'\a\ ’

Py

S;

Given two line segments with equationsr + Aaand s + €b

where a=x,d+yj and b=xi+ y,
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The point of intersectionis x; = x, + Ax, y; =y, + Ay,

(s =)~ (6 —x)
XY T %Yy

where A=

Let the two line segments be @ and @ with P;(1,2), P,(3,1), P5(1,0), P4(3,1)

Therefore r=i+2j and a=2i—j
s=i and b=2i+2j
Therefore A= 20-2)—20-1 _ 2

2X(-1)—2X%X2
As 0 < A <1 there is a point of intersection
— 2 — 1
x, =1+2ix2=21

= 2(—1N=11
y,=2+2(-1) =11

The point of intersection is (23,17), which is correct.
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2.12 Lines and circles

2.12.1 Line intersecting a circle

General form of the line equation

The diagram shows a circle radius r = 1 centered at C(x¢, yc) = (2,1) and three lines: L}, L,
and L that miss, touch and intersect the circle respectively.

The line equation is ax+by+c=0

Point(s) of intersection x = x,—ac, * ’c; (@ —1)+b*? (1)
Y=y —bc, £ ,/c;(bz —1)+ a’r?

where cr=axc+ byc+c

Miss condition

Line L, is —x+y—1=0 (2)
L, normalized is ! x+ ! y L _ 0
. gy =
27 27 e
1

where a= _ﬁ

2 1 1
then Lo _ﬁ_i_ﬁ_ﬁ

22 22 _ 51 _ 1 1
G 1)+ =2(i-1)+i=-

.

The negative discriminant confirms the non-intersection.
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Touch condition

Line L, is y —2=0 (whichis already normalized) (3)
therefore a=20 b=1 c¢c=-2
and cr=0+1-2=-1

AP —-1)+ar=11—-1)=0
The zero discriminant confirms the touch condition:
using (1) x=2
and (2) y=2

Therefore the touching point is (2,2) which is correct.

Intersect condition
Line Ls is x—y=0 (4)
. . 1 1
L; normalized is —x——=y=0
NN
1 1
where a=— b=—— c=0
2 2

The positive discriminant confirms the intersect condition.
i =2—1+ [L =
Using (1) x=2 2_\/: 2 and 1

and (4) y=2 and 1

The intersection points are (2,2) and (1, 1) which are correct.

Parametric form of the line equation

Y |

Ly| vy P
O
T, ‘
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The diagram shows a circle radius r = 1 centered at C(x¢, yc) = (2, 1) and three lines:
L), L, and L; that miss, touch, and intersect the circle respectively.

The lines are pi=t tAv; p2=t + Av, ps =t; + Avs
) 1., 1,
where t,=j v, =—F=it—j
2 2

t2:2j V2:i

and c=2+j

Let us substitute the lines into the following equations:

Point(s) of intersection  x, = xr + Ax,

yp=yrt Ay,

where A=s-v * \/(s-v)2 —|IslF +7*
s=c—t

L s =2i

(sv)?—|s|fP+r*=2-4+1=-1

The negative discriminant confirms a miss condition.
Lz: s=2i— j
(s*v)—|s|P+7*=4-5+1=0

The zero discriminant confirms a touch condition.

Therefore A=2
The touch point is xp=2 yp=2 whichis correct.
L3: s = 2i + j
(sev)=|s|f +r* =45-5+1=1
The positive discriminant confirms an intersect condition.
) V2
Therefore A=—=FX—==2vJ2 and 2
2 2
The intersection points are
A=22 x,=0+22-=2
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1
—0+202——=2
Y -

)\=\/E X =0+\/5L=
’ V2

1
=0+\/E—=1
by

The intersection points are (1,1) and (2, 2) which are correct.

2.12.2 Touching and intersecting circles
Touching circles

The diagram shows two circles touching one another at a point P(xp, yp).

Y

ry

e
N

X

One circle with radius r; = 1 is centered at C,(1, 1), the other with radius r, = 0.5 is centered
at C, (2.5, 1).

Given d= \/(XC2 - Xg ) + (2 )’c1)2

The touch conditionis d=1r +r,

o n h
The touch point is X, =% t E(XCZ —xy) and  y, =y, + E()'cz o)
then d=@5-12+a-1 =15

The touch condition is satisfied.

x —1+i(25—1)—2
P L5

4t 1-1)=1
p 15

Therefore the touch point is P(2, 1) which is correct.
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Intersecting circles

The diagram shows two circles intersecting one another
at points Py (xpy, ¥p;) and P,(xpy, ¥py).

One circle with radius r; = 1 is centered at C,(1, 1),
the other with radius r, = 1 is centered at C,(2.5,1).

The intersect condition

The points of intersection are

where

and

therefore

and

The intersection points are (1 2,

4

d<r1+7’2

xpy = Xc1 T Ax; — €yy
yer=Ya t Aygt+exg
Xpy = Xcp T Axg t+ gyy

Yp2 = Yo T Aya — x4

A_rlz—rzz-l—dz
2d*
2
e = rl__,\l
d2
d=1

_1-14+225 1
2X2.25 2
4 1 7
8: _—— | = —
9 4 6
13 _73_
TR T T T
13, _ V13 g
TR T T e T T
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2.13 Second degree curves

2.13.1 Circle

General equation

Center (x¢, yc) (x—x)2+ (y — yo)* = P
Given a radius r = 2 and center (2,2)

then (x—2)+(—22=4
2.13.2 Ellipse

General equation

N
N
~

. )

Center origin a_2 + b_z =1 1

witha=2,b=1 2
x2 2 X

th —+y' =1

en 1 y

2.13.3 Parabola

Parametric equation
x=t

Vertex origin t € [-5,5]
y =2t
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2.13.4 Hyperbola

General equation

2 2
x
a b
Foci at (*¢,0) c=+a*+b?
2 2
x
then __}/_:1 with ¢=5
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2.14 Three-dimensional straight lines

2.14.1 Derive the straight-line equation from two points

Given P, and P, V=P~ P1

P=p1+ AV

Given P,(0,1,3) and P,(2,2,0)
P, =j+3k
v=2i+j—3k

and P=p:tAv

2.14.2 Intersection of two straight lines

Given two lines p=t+Aia and q=s+t¢b
where t=xi+yjtzk and s=xi+yj+zk
a=xi+yj+tzk and b=xi+yj+zk

Step 1: If a X b = 0 the lines are parallel and do not intersect.
Step 2: If (t — s) *(a X b) # 0 the lines do not touch.
Step 3: Solving Ax, — X = X, — X,

Na= =Y~ Wt

Az, — ez, =2z, — 2,

provides values for A and & which, when substituted in the
original line equations, reveal the intersection point.

Given t=j+2k and s=2i+t]j
a=3i+j—2k and b=-2i+j+3k

Step 1: Prove that the lines are not parallel.
Although it is obvious that a and b are not parallel, let’s prove it by ensuring thata X b # 0.

i j k

a 3 1 [—2
b —2 1 3
axXb 5 5 5

Therefore the lines are not parallel.

Step 2: Prove that the lines are touching.
If (t — s)*(a X b) = 0 the lines touch.
Therefore (2i + 2k)«(5i + 5j + 5k) = 0 so the lines touch.
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Step 3: Compute the intersection point.
Create the three equations:
3V +2e=2
A—e=0
—2A—3e=—-2
From (2) A=¢
Substituting A = g in (1) A=% and &=

v o

Substitute A and ¢ in the original line equations

p=(+2)+2@Gi+j—2k)=2i+2j+ik

6 7 6

The intersection point is S50 s

2.14.3 (alculate the angle between two straight lines

Given p=r+Ala
and q=s+teb
angle o= cosl(&]
llall - |Ibl]
Given a=2it+j—k and b=i+j

azcos_l[(2i+j—k)-(i+j)}
J6+2
| 3

=cos | —— |= 30°
12

2.14.4 Test if three points lie on a straight line

Given three points P;, P,, Ps.
Let r= @ and s= 13733

The points lie on a straight line when s = Ar where Ais a
scalar.

Given Pi(0,2,2) Py(1,2,1) P5(2,2,0)
therefore r=i—k and s=2i-2k
and s =2r

Therefore the points lie on a straight line.

(1)
(2)
(3)
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2.14.5 Test for parallel and perpendicular straight lines

Given
and

p=r+pua
q=s+t+¢eb

The lines are parallel if a = Ab where A is a scalar.
The lines are perpendicular ifab = 0.

Given three lines

where

Li:p, + pua
Ly:p, + b
Ly ps + Ac
a=3i—-2k
b=3i—-2k
c=j

L, and L, are parallel because a = b.
L, and L; are perpendicular because a*c = (3i — 2k)+(j) = 0.

2.14.6 Find the position and distance of the nearest
point on a line to the origin

Given
where

Distance

Given

therefore

Distance

p=t+Av
)\z—v-t

Vev
OP = ||pl|

t=2j+3k v=3i-3k
_ —(Bi—3k)-@2j+3k) _ 9
Gi-3k)-(3i—3k) 18

— — 1 — 11
Xp —xT+/\xV—O+E><3—15

N =

yp=yT+/\yV=2+%><0=2

z

» =2, T Az, =3+%><(—3)=1%

OP = |lp|| = ||%1 +2j+ %k” =292

2.14.7 Find the position and distance of the nearest
point on a line to a point

Given

where

Distance

Given

and

q=t+Av

y=Y- -9
Vev

PQ=|lp — (t+ Av)|

t=j+3k

v=3i+j—-3k

p=3i+j
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_ Gi+j—-3k-Gi-3k) _18
Gi+j—3k) +Gi+j—3k) 19

then Xq = Xp TAx, =0+ 13 X3 =284
Yo = Yr T Ay, =1+ 1EX1=1947
— — 18 v (_3) —
zy = z; +Az, = 3+EX( 3) = 0.1579
Distance PQ = ”(31 + j) — ((] + 3k) + %(?ﬁ + j - 3k))|| = 0.9733

1

2.14.8 Find the reflection of a pointin a line

Given s =t + Avand a point P with reflection Q
q=2t+ev—p
2ve(p—t
where g= Y
Vev
Given t=j+k
v=3i+j—k
and p=3itj
_ 26itj-k)-Gi-k) 20
Gi+tj—-k)«Gi+j—k) 11
then Xo = 2x, Tex, —x, =2X0+ 2 X3-3=24545

Yo =2 tey, —y, =2X1+ 2 X1-1=28181
zo =2z, tez, — z, =2><1+%><(—1)—0=0.1818

The reflection pointis Q(2.45,2.82,0.18)

2.14.9 Find the normal to a line through a point

Given q=t+Av
the normal is u=p-—(t+Av)
where Azm
Vev
Given t=j+k
v=3i+j—k
and p=3i+j

_ Gi+j-k-Gi-k _10
Gi+tj—k)-Gitj—k 11

therefore
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and X, =xp—(xT+)\xv)=3—(0+%><3)=0.2727
Y, =yP—(yT+Ayv)=1—(l+%><1)=—0.909
z, =z, —(zT+/\zV)=0—(1+%><(—1))=—0.0909

therefore u = 0.273i — 0.909j — 0.091k

The line equation for the normal is n=p+eu

2.14.10 Find the shortest distance between two skew lines

Given p=q+titv
and P'=q t7v
—a)e X v’
Shortest distance d= lita = a) (v’ ol
[lv > v|
Given q=j+3k
q =3k
v=2i+j—3k
v = -k
Calculate v X v’
i j k
v 2 1 -3
v 0 0 —1
vXv | —1 2 0
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2.15 Planes

2.15.1 Cartesian form of the plane equation

Given ax +by+cz=d
where the normal is n=ai+bj+ck

Po = Xol + yoj + zok

and d=n-p,
If the normal is n=j+k
and the point Py(0,1,0)
then Ox+1y+1z=0X0+1X1+1X0=1

The plane equation is y+z=1

2.15.2 General form of the plane equation

Given ax + by + cz — (axy + by, + cz5) =0

where the normal is n=ai+bj+ck

and a point is Po = Xl + yoj + zok

If the normal is n=j+tk

and the point Py(0,1,0)

then Ox+1y+1z—(0X0+1X1+1X0)=0

The plane equation is y+z—1=0

2.15.3 Hessian normal form of the plane equation

To convert the previous equation into Hessian normal form, rearrange the formula and divide
throughout by ||n]|.

Given y+z—1=0
where the normal is n=j+k

lInfl = V2.
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1 1 1
therefore Ey * ﬁz B _2 =0
or %\/E)H—% Zz—%\/g=0

2.15.4 Parametric form of the plane equation

Given vectors a and b that are parallel to the plane
and point T is on the plane

where c=)a+¢eb
and p=t+tc
then Xp = xr + Ax, + ex;

Yp=)rt Aya t+ €Yy
zp=zr+ Az, + ez,

The plane is parallel with the xz-plane and intersects the y-axis at y = 1.
Let a and b be unit vectors parallel with the plane

ie. a=1 b=k
and T(1, 1, 1) is a point on the plane
therefore t=i+j+tk
and p=t+ia+eb

As a and b are unit vectors, A and € measure Euclidean distances.
Thereforeif A =2ande =1

xp=1+2X1+1X0=3
Yp=14+2X0+1X0=1
Zp=1+2X0+1X1=2

2.15.5 Converting a plane equation from parametric form to general form

Given p=t+tia+eb
for P to be perpendicular to O

= @b)bet) — (@-t)[]bl
[[a]l*[[bI[* — (2~ b)?

(a-b)(a-t)— (bet)]a]
llalFIIbIF — (@b’

and =
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*p Jp Zp

X y+—z —|lpl[=0
el liell” el

then

We know in advance that the general equation of this plane is
1 1 — 12 =
5 V2 Yyt V2z 5 22=0

and intersects the y-axis and z-axis at y = 1 and z = 1 respectively.
The vectors for the parametric equation are

a=j—k
b=i
t=k
therefore _0O=-Enx1 1
2 X 1-(0) 2
and o= OCD=(O)x2
2X1—(0)
therefore X, =0+2IX0+0X 1=0

— 1 =1
yp=0+1x1+0x0=1

= 1(— =1
z, =l+Li(-)+0x0=1

2 2
lpll=0* + 47 +1" =132

1 1
The plane equation is Ox+—2—=y + —2 z—%\/g =0
o

1
2 2 V2

and %\/E)H—%\/Ez—%\/g:o

or y+z—1=0

2.15.6 Plane equation from three points
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Given three points

the plane equation is

where
Jr % 1
a=|y, z, 1
yrozp 1

If the three points are R(0,0, 1

then the plane equation is

R(xR’}’R> ZR)> S(xs»)’s’ ZS)’ T(xT))/T’ ZT:)
ax+by+cz+d=0

zp x5 1 X yp 1
zg x5 1 C=|x, Y
zp xp 1 Xp Yo 1
),8(1,0,0), T(0, 1, 0)
1 01 0 01
01 1|=1 c=[1 0 1({=1 d
0 01 011

x+y+z—-1=0

2.15.7 Plane through a point and normal to a line

Given
the plane equation is
If the line is

the plane is

Z X

n=ai+bj+ck and Q(xqygzg)
ax + by + cz — (axq + byg + czq) = 0
n=i+j+k and Q(0,1,0)
x+y+z—1=0

2.15.8 Plane through two points and parallel to a line

d=

—(ax, +by, +czp)

(IX0+1X0+1X1)=—1

Given a line’s direction vector a and two points M(x,p, ya» 2a) and N(xy, Y, 2n)

where

a=x,+yj+zk
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and b= (xy —xp)i+ (yy —yw)j t (zy — zyk

the plane equation is ax + by + cz — (axy + byy + czy) =0

where a = YaZp — YvZa b= zx, — zp%, C=Xa)p — Xp)Ya
Given M=(0,1,00 and N =(0,0,1)

and a=i—j

therefore aXb=n=ait+bj+ck=—-1—j—k

and —x—y—z—(0—1+0)=0

The plane equation is —x—y—z+1=0

or x+y+z—1=0

2.15.9 Intersection of two planes
Given two planes ax+by+czt+d =0 ax+by+cztd,=0
where n, =aji+bj+ck n, = a)i + byj + ¢k

The direction vector of the intersection line is given by n; = n; X n,
and the point P on the intersection line is given by

b ¢ b, ¢

a b ¢ d, bl cl —d, bz Cz

DET =|a, b, ¢, x = 3 3 3 3
a, b, ¢ 0 DET

a, ¢ a, ¢ a b a b

d, a3 c3 —4, a3 c d, al b1 —4, a2 b2

_ 1 G 2 7 = IE 3 Y3
Yo DET 0 DET

Example 1

Let the two intersecting planes be the xy-plane and the xz-plane, which means that the line of
intersection will be the y-axis.

z n n X
The plane equationsarez=0 and x =0

where n, =k n, =i d=0 d, =0

ij k
and n,={0 0 1|=j
1 0 0
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0 0 1 0 01 ~0 0 0
Therefore DET=|1 0 0|=1 |1 0 1 0|
010 X = I =0
0 0|_,/0 O 0 0|_,/1 O
Bl e
= = z = =
Y0 1 1
therefore the line P = An;
equation is
where n; =j
Example 2

Let the two intersecting planes be the xy-plane and the plane x = 1, which means that the line
of intersection will be parallel with the y-axis passing through the point (1,0, 0)

The plane equations are

where

and

and

z=0 and x—1=0

n1:k n2:i d1=0
ik
n,=0 0 1(=j
1 00
0 01
DET=|1 0 0|=1
01 0
_4]0 0] _,/0 O
1o 8][2 5
yoz I =

Therefore the line equationis p = py + Ans

where

and

Po=1

n; = j

-1
o1 _glo 1
ol ot o
=1
1
oo _ 410
o el 2]
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Example 3

Let the two intersecting planesbe x+y—1=0 and —x+y=0.

Therefore n =i+j n,=—-i+j d=-1 d, =0
ij k
and n,=| 11 0/=2k
-1 1 0
1 10 1 0 1 0
DET=|-1 1 0|=4 0‘0 2‘“‘0 2‘ 1
x = = —
0 0 2 0 4 2
0 2 0 2 1 1 -1 1
B L e
= = —_— z = =
70 4 2 0 4

Therefore the line equationis p = p, + An;
where P, =

and n; = 2k

2.15.10 Intersection of three planes

Given three planes ax+by+cz+d =0
ax +by+czt+td,=0
asx + byy +c;z+d; =0

the intersection point (x, y, z) is

d b1 c a, d1 c a, b1 d1

d b2 ¢ al d2 2 a2 b2 d2

B d, b, ¢ |4 d, «c, e b, d,

x = y=- z=—
DET DET DET

al bl Cl
where DET =|a, b, c,
a, b, ¢
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Example 1

Given the planes x=0 y=0 z=0

which are the three orthogonal planes intersecting at the origin.

1 0 0
DET=[(0 1 0(=1
0 0 1
0 0 O 1 00 1 00
x=—]0 1 0|=0 y=—{0 0 0(=0 z=—|0 1 0|=0
0 0 1 0 0 1 0 0 O
The intersection point is the origin, which is correct.
Example 2
Giventheplanes x+y+z—2=0 z=0 y—1=0
1 1 1
DET=|0 0 1|=-1
01 0
-2 11 1 -2 1 11 —2
0 0 1 0 0 1 0 0 0
-1 1 0 ) 0 -1 0 ) 01 -1
x=—1 ' = =1 = —— =0
-1 4 1 z =

The intersection point is (1, 1, 0) which is correct.
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2.15.11 Angle between two planes

z X

Given two planes a;x + bjy + c;z+d, =0 and ax+by+cz+d, =0
where n,=ai+bj+ck and n,=a)+ byj+ ok

n °n
the angle between the normals is « = cos™' | —1—2—
[l 1[I, |

Given the planes x+y+z—1=0 and z=0
where n=i+j+k and n,=k

In,ll=v3 and |[|n,||=1

4 1 o
a = CoS T = 54.74
3

2.15.12 Angle between a line and a plane

Given the plane ax+by+cz+d=0
where n=ai+bj+ck "t
and the line p=r+la 2

the angle between the line and the plane’s normal is

| 1
1( n-a J
a=cos | ——

[[n]]-{fall ‘ X
Given the plane x+y+z—1=0
then n=i+j+k
and a=itj

Infl=+3 and [lal| =2

Sl 2 o
o = COS T = 35.26
6
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2.15.13 Intersection of a line and a plane

Given a plane ax+by+cz+d=0
where n=ai+ bj+ck
and a line p=t+Av
. . , —(n-t+d)
for the intersection point P A=s——
n-v
Example 1
Given the plane xty+z—1=0
and the line p=t+Av
where t=0
and v=i+j
_ —(1X0+1X0+1X0-1) _1
then I1X1+1X1+1X0 2
The point of intersection is P(%, , 0).
Example 2
With the same plane xX+ty+tz—1=0
but t=i+j+k
and v=it+jtk
Lo TUXIHIXI+IXI-]) 2
1X1I+1X1+1X1 3
p=t+Av

The point of intersection is p(%, %, %)

2.15.14 Position and distance of the nearest point on
aplane to a point

Given the plane ax+by+cz+d=0
where n=ai+ bj + ck

and a point P with position vector p.
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The position vector of the nearest point Q is given by q = p + An

—(n-p+d)
where P
n-n
The distance PQ is PQ = ||An]|
Given the plane x+y=0
where n=itj

and a point P(1, 1,0) where p=i+tj

)
2
The nearest point is Q(0, 0, 0) the origin.
The distance is PQ=|- l(i + ])|| -2
2.15.15 Reflection of a pointin a plane
Given the plane ax+by+cz+d=0
where n=ai+ bj+ck
and P is a point with position vector p
P’s reflection Q is given by q=p+ An
where A= “2n-p+td)
n-+n
Given the plane x+y=0 and P(—1,0,1)
n=i+j
a=2E0,
2

The reflection point is (0, 1, 1).

2.15.16 Plane equidistant from two points
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Given two points  Py(x},y1,2;) and Py(xy,¥,,2,) the plane equation is

(x, —x)x+(y, =y )y +(z, —zl)z—%(xg —xl2 +y§ —ylz +z§ —212) =0

Given P;(0,0,0) and P,(2,2,0)
the plane equation is x+2y—2(4+4)=0
or x+y—2=0

2.15.17 Reflected ray on a surface

Given the surface normal n

the incident ray s

the reflected ray r
then r=s+ An
—2ne.s
where A=
nen
Given n=i+j+k
.1, 1
and S=l——]——k
4 4
1
th A=—=
en 3
1 2
and x =1—--=2=
’ 3 3
1. 1__7
Ir 4 3 2
1 1
zZ =————=——
’ 4 3 12
2, 7. 7
with r=—i—-—j——
3 12 12

Let’s check this vector out. Its magnitude should equal the magnitude of the incident vector s,
and the reflection angle should equal the incident angle.

sl = \/12 {;] +[_rl] :@
Il = J(g) () ()
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o ner
The reflection angle equals 0 =cos " ( J
][Il

The incident angle equals o= cos (&]
|Im[-{[sl|
For ner _ ne-s
orf = « =
[Inf[-{[ell - {ln]-[|-sl]
but sl = Il
therefore ner=n-—s

2, 7. 7 1
er=(+jt+k)|Zi—-—j-—=k|=—=
mer=0t) )(31 12’ 12) 2

1 1 1
es=(i+jt+k)|—i+-j+-k|=—
ne—s=(>{+j )(1 2 4] 5

which confirms that the angle of reflection equals the angle of incidence.
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2.16 Lines, planes and spheres

2.16.1 Line intersecting a sphere Y

Given a sphere with radius r located at C with position
vector ¢

,,,,,,

and a line equation p=t+ Av where
lIv]| =1
a touch, miss or intersect condition is determined / L L
1 3
by A Z L,
where A=sevx(sev) = [slf + 7
and s=c—t

The diagram shows a sphere with radius r = 1 centered at C with position vector c =i + j
and three lines L, L, and L; that miss, touch and intersect the sphere respectively.

The lines are of theform p=t+ Av

therefore pi =1t +Av p.=t + Av, p; =t; + Avs
h t =20 v, = ——it—j
where = - i+

1 1 \/; \/;

t2:2i VZ_J

A _ 1.

t3—21 V3—_$1+$]

and c=i+j

Let us substitute the lines in the original equations:

Ly: s=—i+j
(s*v)?—|s|fP+r*=0-2+1=-1

The negative discriminant confirms a miss condition.

Ly s=—itj
(s*v)?—|s|f+r*=1-2+1=0

The zero discriminant confirms a touch condition, therefore A = 1.
The touch point is P,(2, 1,0) which is correct.

L3: S=_i+j
(sv)?—|s|fP+r*=2-2+1=1

The positive discriminant confirms an intersect condition
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2
therefore A=—==*1=1++2 or \/5—1
2
The intersection points are:
if A=1++2 %, —2+(1+f)( LJ 1-
2
1 1
—0+(1+V2)—— =1+
SN
z,=0

P

if A =+2-1

=
I
—
+
S
.
—

The intersection points are
are correct.

2.16.2 Sphere touching a plane

Given a plane ax +by+cz+d=0

where n=ai+bj+ck

the nearest point Q on the plane to a point P is given by

q=p+ An
ptd
where _2pTe
nen
The distance is given by [|An]|
for a plane and a sphere [|An|| = r

The diagram shows a sphere radius r = 1 centered at P(1,1,1)

The plane equation is y—2=0
therefore n=j

and p=itj+k
therefore A=—(1-2)=1

P
4 X
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which equals the sphere’s radius and therefore the sphere and the plane touch.
The touch point is xXg=1+1X0=1

yo=1+1X1=2

Zg=1+1%x0=1

therefore the touch point is Q(1, 2, 1) which is correct.

2.16.3 Touching spheres

. _ 2 2 2
Given d= \/(xcz = X)) T ey = Vo) H (2, — 7))
the touch condition is d=r+rn

. n
the touch point is X, = X E(xc2 — X))

r
Jp = Ya +El()’cz — Yo

T
_ 1 _
Zp = 2g T E(Zcz Ze))

Given that one sphere with radius r; = 1 is centered at C(1, 1, 1) and the other with radius
r, = 0.5 is centered at C,(2.5,1,1)

then d=\@5-1 +(1—-D*+(1—1? =15
The touch condition is satisfied
and xP=1+L(2.5—1)=2
15
Vp :1+$(1—1)=1

1
z.=1+—(@1-1D=1
P 1.5( )

therefore the touch point is P(2, 1, 1) which is correct.
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2.17 Three-dimensional triangles

2.17.1 Coordinates of a point inside a triangle

To locate points inside and outside the Y
triangle Py, P,, P; using barycentric P1(0.2,0
coordinates.

For any point Py(xy, yo, zo) We can state

Xg = &x; + Axy + Bx;3

Yo=¢&n t Ay, + Bys
zo = €z, + Azy + Bz;

% P50,0,4) X
where et+tA+B=1

The table below shows values of P, for various values of ¢, A and B. Let us check that the
positions of P, reside on the plane of the triangle.

The vertices of the triangle are P;(0, 2, 0), P,(0, 0, 4), P5(3, 1, 0) therefore the Cartesian plane
equation is

ax + by + cz=4d (see plane equation from three points)

where
y oz 1 z, x 1 x ¥y 1
a=|y, z, 1 b=|z, x, 1 c=lx, y, 1 d = ax +by +cz
Y, zy 1 z, x, 1 X 0y, 1
2 01 0 01 0 2 1
a=|0 4 1|=4 b=|4 0 1|=12 c=|0 0 1|=6 d=4X0+12X24+6X0
1 01 0 31 311

=24

therefore the plane equation is 4x + 12y + 6z = 24
The table also confirms that the values of P, satisfy the plane equation.

& A B Xo Yo 2 4x0 + 12)/0 + 6Z0

1 0 0 o0 2 0 24

0 1 0 o0 0 4 24

0 0 1 3 1 0 24

1 1 1 1

L 1 1 31 7 24
1 1 1 1

1 1

1L 9 0 1 2 24

1 1 1 4

3 3 ;1 1 3 24
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2.17.2 Unknown coordinate value inside a triangle
The x and z-coordinates of a point P are known and it is required to determine its

y-coordinate inside the triangle Py, P,, Ps.
Using barycentric coordinates we have

Yo=¢en t Ay, + (1 —e— Ay,

e A 1
where = =
X, Z, 1 X, 2, 1 Xz 1
x, z, 1 X zy 1 x, z, 1
X,z 1 x oz 1 X, zy 1
For P, to be inside the triangle (g, A) € [0, 1].
If Py is positioned at P, i.e. xy =z, = 0, y, should be 2.
Therefore & = A = 1
0 0 1 0 0 1 0 0 1
0 4 1 301 0 4 1
3 01 0 01 3 01
and & _ A _ b
—12 0 —12
which makes e=1 and A=0
therefore Yo=1X2+0X0+ (1 —1-0)1 =2 whichis correct.

The table below shows the values of €,A,1 — £— A and y, for different values of x, and z,.
Let us check that the interpolated values of P, reside on the plane of the triangle.

The vertices of the triangle are P;(0, 2,0), P,(0, 0, 4), P5(3, 1, 0) therefore the Cartesian plane
equation is ax + by + cz = d (see plane equation from three points)

where
y oz 1 z, x 1 X ) 1
a=\|y, z, 1 b=z, x, 1 c=|x, y, 1 d=ax +by +cz
Yy Z4 1 z, X, 1 X, Vs 1
2 01 0 01 0 21
a=1|0 4 1|=4 b=|4 0 1|=12 c=|0 0 1|=6 d=4X0+12X24+6X0
1 01 0 3 1 311 =04

therefore the plane equation is 4x + 12y + 6z = 24
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X Yo Zy € A 1—e— A 4x+12y+6z
0 2 0 1 0 0 24
3 1 0 0 0 1 24
0 0 4 0 1 0 24
2 1 1 1
1 3 2 A 3 3 24
5 1 1 2
2 6 1 12 4 3 24
7 S 1 1
1 s 1 2 4 3 24

The table below also confirms that the above values of P satisfy the plane equation.

Let us test a point outside the triangle’s boundary, e.g. Py(4, 0, 0)

g _ A _ 1
4 01 4 01 0 01
0 41 301 0 41
3 01 0 01 301
s_A_ L
4 0 -12
therefore e=—1
which confirms that P, is outside the triangle’s boundary.
Similarly, for Py(0, 0, 5) € = A = 1
0 51 0 51 0 01
0 41 301 0 41
301 0 01 301
e_ A _ 1
3 —-15 12
therefore e=—1 and A=1]

which confirms that P is also outside the triangle’s boundary.
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2.18 Parametric curves and patches

The following examples illustrate how various curves can be created by mixing together
different parametric functions.

2.18.1 Parametric curves in [R2

Sine curve
t =2m 1
max
a=1
=t 0.5
. telo, t_ ]
y = asint max
1 2 3\ 4 5 6
-0.5
-1
Cosine curve
Loax = 2T 1
a=1
- 0.5
x=t telo, t ]
Yy = acost max
1 2 3 4 /5 6
-05
-1
Sine curve with growing amplitude 2
— i 2 3\ 4 5 6
t
a=-— —02
e t"“" telo, ¢ 1 —04
y = asint —0.6
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Cosine curve with growing amplitude
t =27 1
max
ot 0.8
=7 0.6
mq
=t ax tE[O, tmax] 04
0.2
Yy = acost
6
-02
—04
Sine curve with decaying amplitude
t =2m
max
t 0.6
a = —_——
mas L pef0, ] 04
x= 02
y = asint
6
—-0.2
Cosine curve with decaying amplitude
t =27 1
max
t 0.8
a=1——— 06
x=t e re [0’ tmax] 0.4
0.2
y = acost o
6
-02
~04
Sine-squared curve |
ooy = 270 0.8
a =
et 0.6
o, telo, ]
y=asnt 0.4
0.2
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Cosine-squared curve

a=1
xX=t

y= acoszt} LE10,

Lissajous curve

a=1

x=asnt Ly
y = asin2t max

Circle

t =27

max
a=1

x=ac9st relo, ]
y = asint max

Ellipse

0.8
0.6
0.4
0.2
2 3 4 5 6
1
0.5
0.5 1
—0.5
-1

0.5

0.5

D
%
i
)
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max te [0) tmax]

Logarithmic spiral

t =27
max

a=0.6
b=238

— t
x = aetc?sbt tefo ]
y = ae'sinbt

Parabola
tmax = 4
P =

x:tl P e
2p

rxf g
N

—100

50 100
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Neil’s parabola

Cardioid

t =27
max

a=1

x = a(2cost — cos2t)

y = a(2sint — sin 2t) } relo ty,]

2.18.2 Parametric curves in R3

Circle

t =27

max

a=1

X = acost

y=0 telo, ¢ .1

z=a+asint

15
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Ellipse

a=2

Y=1
b=1
X = acost
y = bsint telo, ¢t . ]
z=0 IS

Spiral 1

y=1
a=1
X = acost

y=asnt o tel0, ¢ ]
z=t

Spiral 2

Y=1
a=2
b=1
X = acost X=1
y=bsint » tel0,t ]
z=t
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Spiral 3

t =47

max

a=1

b=2

X = acost

y = bsint telo,t |
z=t

Spiral 4

a=1

X = —acost

y = asint telo, t
z=t

ma.x]

Spiral 5

t =41

max

a=1

X = acost

y = —asint telo,t
z=t

max ]
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Spiral 6
oo = 4T v
t
r:_
tmax X=1
x=rcost( te€l0,t ]
y =rsint
z=t
Z=4
Spiral 7
t
r=1—-———
X = rcost telo,t |
y =rsint
z=t
Z=4n
Sinusoid

Y
t =27
max
a=1 X=1
x = asint
Y= tE[O,tmax]
z=t

Z=12
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Sinusoidal ring
tmax = 27T Y
a=1
b=02
n=38
X = acost
y=bsinnty tel0,t ] P
z = asint
Z=1
Coiled ring
t =27

max

R =2 (major radius)
r = 0.5 (minor radius)
n=24

x = (R+ rcosnt)cost
y =rsinnt telo, ¢ .1
z=—(R+rcosnt)sint

2.18.3 Planar patch

Given Poo, PIO’ Pll’ POl in RZ

RO R v e H

Given Py (0,0), Py; (2, 3), Py1(4, 3), Pyo(4, 0)

SRR R i i H T
=l a8 3 é][?]zlé
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2.18.4 Parametric surfaces in R3

Modulated surface

y = sin(x + z)
T=m
a=1

y=asin(x+2)} (x,2) [T, T]

cos(x + z)
T

J
T
a
Y

1
acos(x +2)} (x,z)e [T, T]

sin(xz)
T

Y
T
a
J

1
asin(xz)} (x,z) e [T, T]

ZX\\
SN
-\

V<4
NN
N2

N
N7

[ 7
ol N\, z\\\:
’ I~y \\
T g
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cos(xz)
T

N

1
acos(xz)} (x,z) e[-T, T]

y = cosx + sinz

T =2m

a=1

y =acosx+asinz} (x,z)e[-T, T]

SR
N Vo 4{
&S ’Q’Q’\\’/”’"&;‘\f’g A

SN 9, L) X\ 7
O
N7 SANS\ - 2

Q.’,l"l[ﬂr

y = zcosx + xsinz
T =4
y =zcosx+xsinz} (x,z)e [T, T]




Examples

165

2.18.5 Quadratic Bézier curve
Quadratic Bézier curve in R2

A quadratic Bézier curve is given by
p(t) = (1= 1) p; + 2t(1 = ) pc + £°p,
Given the points P;(0,0), Pc(1, 1.5), P,(2,0)

the quadratic Bézier curve is shown with its control points.

Quadratic Bézier curve in R3

Given the points P;(0, 0, 0), Pc(2,2.5,0), P5(3,0, 3)

the quadratic Bézier curve is shown with its control points.

2.18.6 CubicBézier curve
Cubic Bézier curve in R?

A cubic Bézier curve is given by

p(t) = (1 —0)°p, +3t(1 — 1)’ pey + 32 (1 — ) per + £'P,
Given the points

P,(0,0), Pey(1,2), Pey(2.3, 2), Py(2.5,0)

the cubic Bézier curve is shown with its control points.

1.4
1.2

0.8
0.6
0.4
0.2

0.5 1 1.5 2
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Cubic Bézier curve in R3

Given the points P;(0, 0, 0), P¢,(2,2.5,0), Pc,(3, 0, 3), Y .
P,(0, 2, 4) the cubic Bézier curve is shown with its
control points.

2.18.7 Quadratic Bézier patch

A quadratic surface patch is described by

5 ,.|Poo Pa Pop || (1— v)?
pu,v) =[A—u)” 2ull—u) u’] P Pu Py || 2vd—v)
Py Py Pxn v
Given Poo = (0, 0, 1) Po1 = (1, 0, 2) Po2 (2, 0, 0)

P, = (0512 p,=@01L3) p,23,12)
Py = (0,21,0) p, =(1,21,2) p,(22,0)

The surface patch is shown in the diagram

P
Y I
Py T : R Py
|
[
‘ \
/ [ 1 | \
/ | \
| \
// U A
/ I \\
/ - \
/ ! \
Piyé& - _[T I __»Pn
== P __k=d= L
\ *~ﬁ# L .
\ e
\ | 4
4
N T g X
A\ - 02
POO A\ : //
\\\\5//
Poi
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2.18.8 Cubic Bézier patch

A cubic surface patch is described by

POO

P, v) = [A—w)’ 3ul—u) 3uA—u) ]| P
p20

p30

Given poo = (0) 0) 3) P01 = (L%)-”%) p02 (2’%’3%) P03 (3, 0: 3)
P, = (0,02) p, =@ 1L21) p,2 1,21) p;,502)

p20 = (0)2)0) P21 = (1)201%) pzz(za 2)1%) p23(3a 2’0)

POl
pll
I321
P35

P30 = (073)0) P31 = (1) 37 1) P32(2,3> 1) P33(3, 3) 0)

The surface patch is shown in the diagram

P02
p12
p22
Ps

Pos
P
P
Ps;

a-vy
3yl —v)?
31? (13— V)
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2.19 Second degree surfaces in standard form

Sphere Ellipsoid

x*+y* + 22 =100

Elliptic cylinder




3 Proofs

We must never assume that which is incapable of proof.
G.H. Lewes (1817-1878)

This third section is divided into 18 groups:

3.1 Trigonometry

3.2 Circles

3.3 Triangles

3.4 Quadrilaterals

3.5 Polygons

3.6 Three-dimensional objects
3.7 Coordinate systems

3.8 Vectors

3.9 Quaternions

3.10 Transformations

3.11 Two-dimensional straight lines
3.12 Lines and circles

3.13 Second degree curves

3.14 Three-dimensional straight lines
3.15 Planes

3.16 Lines, planes and spheres

3.17 Three-dimensional triangles
3.18 Parametric curves and patches

Not everyone will be interested in why a formula has a particular form. For some, all that
matters is that it provides the correct numerical result. However, students and academics may
have other interests - they may be interested in the origins of the formula and the strategy
used in its derivation.

169
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Some formulas are extremely simple and are readily derived using the sine rule or cosine
rule. Others are much more subtle and require techniques such as completing the square,
recognizing ratios in virtual triangles, substituting trigonometric or vector formulas to
simplify the current status of the formula.

What is apparent from these proofs is that deriving a proof is not always obvious.
Remember, that it took Sir William Rowan Hamilton over a decade to crack the non-
commutative rules behind quaternions; yet today, any student can be taught the ideas behind
vectors and quaternions in one or two hours. Therefore readers should not be surprised how
easy it is to prove that 1 = 1, even after working through several pages of complex algebra!
Such dead ends are often due to working with statements that are linearly related in some way.

In many of the proofs involving vectors, a vector equation is derived which reflects a
geometric condition. By itself, this equation is unable to reveal an answer, but by taking the
scalar product of its terms with a suitable vector, the equation is simplified because the dot
product of a critical pair of vectors is known to be zero. This is a very powerful problem-
solving technique and should be remembered by the reader.

The following proofs are the heart of this book. They may not always reveal the most
elegant route to the final result, and if the reader can discover a more elegant strategy,
hopefully they will derive pleasure in the process, which is what mathematics should be about.
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3.1 Trigonometry

3.1.1 Trigonometric functions and identities

.\ . a
By definition sina = — B
c :
b a <
cosa = —
c
a ac sina =
tana = — = — = b
b ¢ cosa
. b bc cosa
similarly cota = — = — = —
a ca sina
« osa
tana = cota = —
cosa sin«
3.1.2 Cofunction identities
. a
sina = — = cos
c
b
cosa = — = sin 3
c
a
tana = — = cot B
b
c
csca = — = sec 3
a
sec ¢ csc B
a=—=
b
b
cota = — = tan 3
a
3.1.3 Pythagorean identities
at+ b= ¢ (1)
. 2 at b _ c? _
Divide (1) by —2+—2——2—1
¢ < c
therefore sina + cos’a =1 (2)
sinffa . cos’a 1
_|._

Divide (2) by cos?« =
Y cos’a  cos’a  cos’a

therefore 1 + tan’a = sec’a
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sinfa . cos’a 1 2
+ = =csca

Divide (2) by sin’a — = —
sina  sin’a sin‘a

therefore 1+ cot?a = csc? a

sinfa + cos’a=1 | 1 + tan?a = sec’a | 1 + cot?a = csc’a

3.1.4 Useful trigonometric values AN
30°
sin30° cos30° tan30° L !
2
Pythagoras W+ (%) =1 %00 60°

- 1 _1 <1 >
h_\ll 4 2\/g :
sin 30° = % = cos 60°
cos30°=%\/g=sin60°

tan 30° = %\/5

and tan 60° = \/g
sin36° cos36° tan36°
Given + a6
AABC is isosceles, therefore AC=AB=r
ABCD is isosceles, therefore CD = x D2 ¢
ON X
ADAC is isosceles, therefore DA =x and BD=r—x rex 36°
ACBD is similar to AACB, therefore
x _r—x
r x
X +xr—r=0
hich h t — 1(—p++[s2
which has roots x=2(rENr +4)
Letr=1 =l(—1i\/g)

x 1
c0s36° =2 =—"—
X 1445

1 1=y 1445
“1445 (-1-45) 4

+5

1
C0s 36° = 2 = sin 54°

C0s 36° =
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but sin? 36° + cos? 36° =
§in 36° = \/1 — cos? 36°
2
. 1+4/5
sin36° = (1 — [ f ]
4
V10 —2
sin 36° = 0—\/5 = cos 54°
4
sin36° 10— 245
tan 36° = =
cos 36° 1+ \/g
tan36° = 45— 2/5
sin54°  1++/5
tan 54° = ==
cos 54 \/10 . 2\/§
5+2
tan 54° = ,/—\/g
5
sin45° cos45° tan45° 45
W+ K =1 !
h=JL =12
22 8 45°
h h
sin45° = — = l\/g
1 2
h
cos45° = n = %\/E
tan 45° = E =1
h

3.1.5 Compound angle identities

AABC and AACD are right-angled triangles
DF is perpendicular to AB
EC s parallel to AB
therefore BC=FE and EC=FB
LAIF = £DIC s LIDC =«
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BC FE
sin(a = 8) E=E=sina . FE = ACsina
ED
— = cos ED = DC cos«
DC
AC DC
— = cos and — =sin
AD A AD A
. ED FE ED . AC DC
sinfla+B)=—=-—"—+—=sina— +cosa—
AD AD AD AD AD

If B is negative

cos(a = B)

If B is negative

tan(a = )

Divide (1) by cos « cos 8

If B is negative

|sin(a + B) = sina cosB + cosa sinB|

sin(a — ) = sina cos(—B) + cosa sin(—f3)

|sin(a — B) =sina cos B — cosa sinB|

AB
— =cosa S AB=cosa AC
AC
E=sinaz .. EC = sina DC
DC
AC DC
— = cos and — =sin
B m B
AF AB EC AC . DC
cosla+B)=—=———=cosa— —sina—
AD AD AD AD AD

|cos(a + B) = cosacosB — sina sinB|

cos(a — B) = cosa cos(—B) — sina sin(—p)

|cos(a — B) = cosacosPB + sina sinB|

sin(a + B) _ sinacos 3+ cosasin 3
cos(ae + B) cosacosB— sinasin B

(1

tan(a + B) =

tana + tan 8

tan(a + B) =
(@ p) 1—tanatan 8

tana — tan(—f3)

tan(a - :8) = 1+ tanatal’l(_ﬁ)

tanao — tan 3

tan(a — B) =
P 1+ tanatan 8
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cos(a + cos & cos 3 — sin o sin
cot(a = B) cot(a + B) = — @t h) _ , B - 5 (2)
sin(f@ + 8)  sinacos B+ cosasin B
Divide (2) by sin « sin 8
—1
cot(ar+ f) = cotacot B
cota + cot B
cota cot(—pB) +1
If B8 is negative cot(a — B) = Cotercoth) +1

cota — cot(—p)

cotacot 3 +1

cotla=p) = cota —cot 3

3.1.6 Double-angle identities

Substituting 8 = « in the compound angle identities produces

sin2a = 2 sina cosa

cos2a =1 — 2 sin®a

but cos’a + sin*a = 1 - cos2a = cos’a — sin*«a
2tana
tan2a = ————
1—tan“«
cot’a —1
cot2q = ———
2cota

3.1.7 Multiple-angle identities

Letting B equal multiples of & in the compound-angle identities produces

sin3a = 3sina — 4 sina

cos3a =4 cos’a — 3 cosa

3tana — tan’a

tan3a = 2
1—3tan“«

cot’a — 3cota

cot3a = 3
3cota—1

sinda = 4 sina cosa — 8 sin‘a cos «
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cos4a = 8 cos*a — 8 cos?a + 1

dtana —4tan’«

tan4a = 5 "
l1—6tan“ o + tan" «

cot*a — 6cot’a +1

cot 4 3
4cot’a —4cota

sin5a = 16 sin’a — 20 sin*a + 5 sina

cos5a = 16 cos’a — 20 cos’a + 5 cosa

5tana —10tan’ @ + tan’ &

1—10tan’a + 5tan*«

tan5a =

cot’a —10cot’ @ + 5cota

5cot*a —10cot’a +1

cotSa =

3.1.8 Functions of the half-angle

Double-angle identity

o
COS —

Double-angle identity

cos2a =1 — 2 sin*«

cosa = 1—Zsinz%

s _ l—cosa
2 2

sin

e 1—cosa
sm—z:/—
2 2

cos2a =1 — 2 sin*«

cosoz=1—25in2a=1—2(1—cos2

[ 1+ cosa
cos—=t4/—
2 2

;)
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o
tan —
2
1—cosa
« Sing i\/ 2 1—cosa
tanzz 2 = ==+ 1+
osy 4 [Ltcosa cosa
2T 2
« 1—cosa
tan— =+, |[——
2 1+ cosa
o
cot—

o 1 1+ cosa
cot— = ==X
2 a 1—cosa
an —
o 1+ cosa
cot—=i,/—
2 1—cosa

3.1.9 Functions of the half-angle using the perimeter of a triangle

Cosine rule

a?=b*+ ¢ — 2bccosA

C
at—b* -t b +ct-a
COsA = =
—2bc 2bc b a
A
but cosA =1—2sin> = A _ B
A B+l
therefore 1—2sin> = = € —4
2bc
L, A b*+ct—a? 2bc — (B* +¢* —a?)
2sin“ — =1— =
2 2bc 2bc

SRV NEIEE
2 2bc

Sm

A _a—(b—¢ _(a-btoatb—o)
2 4bc 4bc
Let

2s=a+b+c
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therefore sn? 2 = (2s —2b)2s —2c) _ (s—b)(s—¢)
2 4bc bc
. A (s=b)(s—c)
sin—=,[———2~~ 7
2 bc
2, 2_ 2
Similarly cos A = 2 cos? é —-1= —b e —a
2 2bc
2 2 _ 2 2 2
therefore zcoszé:H_b tce—a _(bte —a
2 2bc 2bc
rcos? B = b+c—a)b+c+a)
2 2bc
os? é _ 2s(2s — 2a) _ s(s—a)
4bc bc
A s(s—a)
cos— =
2 bc

For tan 4 divide sin 4 by cos —
2 2 2
A (s—=b)(s—c)
tan— = |-~
2 s(s—a)

3.1.10 Functions converting to the half-angle tangent form

sina
Double-angle identity sin2a = 2 sina cosa

. 64 84 o
Zsm—cos—cosz 2tan5

. .«
sina@ = 2sin—cos— =

2 2 a ,

COs — sec E

o
2tan—
sina = 2
lo
1+ tan® —
2
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cos
Double-angle identity cos 2a = 1 — 2 sina
o «
2tan’ — 1—tan’—
cosa =1—2sin>— =1— 2 - 2
2 & , &
sec” — 1+ tan” —
2 2
«o
1—tan® —
cosa = 2
1+ tan? o
2
tan o
. . 2tan«
Double-angle identity tan2e = ————
1—tan” «
o
2tan —
tana = 2
1— tan? o
2
Similarly
1+ tan? ad
csca = 2
2tan ks
2
o
1+ tan® —
seca = 2
o
1—tan® —
2
o
1—tan® —
cota = 2
o
2tan® —
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3.1.11 Relationships between sums of functions
sina + sin 8

sin(a + B) cos(a — B)
= (sina cos B + cosa sinB8)(cosa cos 8 + sina sin 8) = sina cos a cos?B
+ sin B cos B sin?a + sin B cos B cos’a + sina cos a sin?B
= sina cos a(cos?B + sin?B) + sin B cos B(cos’a + sin’a)
but cos? + sin?0 = 1
. sin(a + B) cos(a — B) = sinacosa + sin B cos B

sin(a + B) cos(a — B) = %sinZoz + %sinZB

2sin(a+ﬁ)cos(“_'3): sina + sin 8
2 2

sina — sin 8

sin(a — B) cos(a + B)
= (sina cos B — cosa sin B)(cosa cos B — sina sin B)
= sina cosa cos’B — sin B cos B sina — sin B cos B cos’a + sina cos a sin?B
= sina cos a(cos? B + sin?B) — sin B cos B(cos’a + sin’a)
but cos?6 + sin%0 =1
- sin(a — B)cos(a + B) = sinacosa — sin 3 cos B

sin(a — B) cos(a + B) = %sinZa —%sinZB

ZSm(a;ﬁ)cos[a—;BJ=sina—sinB

cosa + cos 3

cos(a + B) cos(a — B)
= (cosa cos B — sina sin B)(cosa cos B + sina sin B)
= cos?a cos?3 + sina cosa sin B cos B — sina cos a sin 8 cos B — sin®« sin? 3
= cos’a cos? 3 — sin’a sin’B
but sina + cos’a =1
sosinfa=1— cos’a
cos(a + B) cos(a — B) = cos?a cos?B — sin?B(1 — cos’a)
= cos’a cos*B — sin?B + sin?B cos’a
cos’a(cos®B + sin?B) — sin?B

cos’a — sin’f

=1 — sin*a — sin? B
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but cos260 = 1 — 2 sin%6

s —sin’6 = 1 (cos20—1)

cos(a + B) cos(a — B) =1+ %(cos 20—1)+ %(cos 28—-1)
= Lcos2a + 1cos28

2cos[a—;'8)cos(a_ B]: cosa + cos B

2

cosa — cos 3
sin(a + B) sin(a — B)
= (sina cos B + cosa sin B)(sina cos B — cos a sin B)
sina cos?3 — sina cosa sin B8 cos B + sina cosa sin B cos B — cos’a sin?3
= sina cos’B + cos?a sin? 3
= —(cos’a sin?3 — sin’a cos?B)

but sina + cos’a =1
socos’a =1—sin’a
= —((1 — sina) sin?B — sin’a cos?B)
= —(sin?’ — sin’a sin?B — sin’« cos?B)
= — (sin® — sina (sin?B + cos?B))
= —(sin’ — sin’a)
but cos26 = 1 — 2 sin%0

- sin’0 = 11— cos26)
sin(a + B) sin(a — B) = —(% (1—cos2B) — %(1 — cos2a))

= —%(cosZa —cos2p3)
—ZSin(a:B]sin(a;B] = cosa — cos B

sin(e + B) _ sinacos B+ cosasin 3

tana + tan 8

cosa cos 3 cosa cos B

sin(a + B)

=tana +tan 3
cos a cos B
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tana — tan 3

sin(e — B) _ sinacos B — cosasin B

cos & cos 3 cos a cos B

sin(a — )

= tana — tan B
cosa cos 3

cota + cot B

sin(@ + B) _ sinacos 3+ cosasin 3

sinaesin 3 sin asin 3
sin(a +

M = cota+cot 3
sina sin 8

cota — cot B

sin(@ — B) _ sinacos 3 — cosasin 3

sin asin 3 sin asin 8
sin(e — B)
——— = =cotB—cota
sin a sin 3
sin(a —
—M = cota —cot 3
sinasin 8

3.1.12 Inverse trigonometric functions

sin(sin”lx) = x
cos(cos lx) = x
tan(tan”!x) = x
sin"!(—x) = —sin”x
cos I(—x) = — cos”x
tan (—x) = —tan"'x

Domain

tan 'x ]—Z, Z[ (Open interval: extends to both
27 2 L . .
limits but includes neither)
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3.2 Circles

3.2.1 Proof: Angles subtended by the same arc

This theorem states that from an arc, the angle subtended at the center of a circle is twice that
subtended at a point on the periphery.

Strategy: Construct the geometry with such a scenario and analyze the resulting triangles.

AOAB, AOBC, AOCA are isosceles triangles (OA, OB, OC are radii)

AOAB 2¢ = 180° — 6 (1)
AABC 2¢ + 2(8 + 1) = 180°

Leta = + 1 2a = 180° — 2¢ )
Substituting (1) in (2) 200 = 180° — (180° — 0)

therefore

Corollary

1. Peripheral angles subtended by the same arc are equal.
2. When the arc is a semicircle the central angle equals 180°, which makes the peripheral
angle 90° [Theorem of Thales].

3.2.2 Proof: Alternate segment theorem

The alternate segment theorem states that when a line
PQ is tangent to a circle at P the alternate segment
angles 0 and vy are equal.

Strategy: Use the fact that the central angle subtended by
an arc is twice the angle at the periphery.

Angle subtended by an arc reflex angle ZPOA = 2¢
ZPOA = 360° — 2¢&
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OP is a radius and tangent to PQ

Interior angles of APOA
therefore

£ 0PQ = right angle
Interior angles of APAB
Substituting (1) in (3)
Comparing (2) and (4)

360° — 2¢ + 2¢ = 180°
e =90°+ ¢
B+0+d=90°
B+vy+e=180°
B+y+¢=90
6=y

The alternate angles are equal 6 = y

3.2.3 Proof:Area of a circle, sector and segment

Area of a circle

Strategy: Use integral calculus to find the area of a quadrant and

multiply this by 4.

The equation of a circle is x* + y* = r* where r is the radius.

Equation of quadrant curve is given by

therefore
Let

therefore
and

Establish new limits:

whenx =0

whenx =r

y= /rz — 2
Aq = J(:\/rz — x*dx

x = rsin(0)

\/r2 —x* =rcos6

dx = rcosf db

rsind =0 “0=0

rsinf =r 0=1
2

A = ﬁrcos@ rcosf do
a Jo
= rZJ.%coszO de

1 + c0s260)do

Area of circle = 7rr?

(1)
)
3)
(4)
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Area of a sector

Strategy: The area of a sector is found by using the sector’s interior
angle or arc length to create a fraction of the total area.

Area using arc angle [°]

Area using arc angle [rad]

Area using arc length

o
= T
360°
A= g =1y
2 2
s
A=—"gr*=1lg
27 2
= ar? A=1Lgr A=1L1gr?
360° 2 2

Area of a segment

Strategy: Compute the area of the segment as a function of a by
subtracting the area of triangle OPQ from the area of the sector.

Area of segment

but

and

Substituting (2) and (3) in (1)

or using radians

= 7’ — =ah
360° 2
h=rcos—
a = 2rsin i
2

o

o a .«
A= ar* — r’cos — sin —
2 2

360°

A=—(a—sina
2( )

[>

()

3)
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3.2.4 Proof: Chord theorem

Strategy: Create two triangles from the intersecting chords and
prove that they are similar.

Let AB and CD be two chords intersecting at O
/DAB = /BCD = « (subtend equal arcs) Cx

Similarly £LADC = £ABC = [ (subtend equal arcs)
£AOD = £COB =y (opposite angles)
therefore AAOD and ACOB are similar
Consequentl a_c
q y 15
and ab = cd

3.2.5 Proof:Secant theorem

The secant theorem states that if two secants intersect
at O outside a circle, then the product of the
intercepts between O and the circle on one is equal to
the product of the two intercepts on the other.

Strategy: Create two triangles from the intersecting
secants and prove that they are similar.

BCis a common chord

therefore £LCEB= 4CDB= [ (subtend equal arcs)
and LAEC= LADB =1y (complementary to 3)
and £LEBD = LECD =60 (subtend equal arcs)

Therefore As ABD and ACE are similar

Therefore c __4
a+b c+d
or ala + b) =c(c+ d)

3.2.6 Proof:Secant-tangent theorem

The secant-tangent theorem states that if two secants intersect
at O outside a circle, and one of them is tangent to the circle,
then the length of the intercept on the tangent between O and
the point of contact is the geometric mean of the lengths of
the intercepts of the other secant.
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Strategy: Identify two similar triangles from the construction lines and form ratios
of their sides.

Prove that AOAC and AOBA are similar

£LOAC = L0OBA (alternate segment theorem)

Let /AOB = j (common to both triangles)
therefore /OCA=180°—a—f
and /OAB=180°—a — 8

There are three common angles, therefore the triangles are similar

t —
a+b

and ?=ala+0b)

therefore

~ |

3.2.7 Proof: Area of an ellipse

Strategy: Use integral calculus to find the area of a quadrant and
multiply this by 4.

2
X

2
a

The equation of an ellipse is

2
+ )’_2 =1 where a and b are the
radii. b

Equation of the quadrant curve is given by y = b Va* —x*
a

a
Aq = _[O Va* — x*dx (area under curve between the limits 0 and a)

Q|

Letx = asinf

therefore va* —x* = acosf
and dx = a cosf db

Establish new limits:
whenx =0 asinf =0 L0=0

whenx =a asinf = a .‘.(9:%
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A = Rj%acosﬂ acos6 do
q a 0
= ubffcosZOdH

ab =
= 7-[0 (1+ cos26)do

Area of ellipse = 7ab
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3.3 Triangles

3.3.1 Proof: Theorem of Pythagoras

Strategy 1: Place a rotated square inside a larger square and D b G a ¢
resolve the geometry.

a
ABCD and EFGH are squares. H b
By symmetry, the diagram can be annotated as shown.
The area of ABCD = (a + b)? which must equal the area of the
shaded triangles and the inner square EFGH. b F

a
(a+b)2=4><%ab+c2 4
A a E b B

a’ + 2ab + b*> = 2ab +

Pythagorean theorem | a® + b* = 2

Strategy 2: Use the altitude in a right-angled triangle to
resolve the geometry.

AABC is a right-angled triangle, therefore

2-2 and b_x

c a c b
therefore a?=cy and b’ =cx
and A +b=cx+cy=clx+y)
but x+ty=c
therefore 2+ b=

3.3.2 Proofs: Properties of triangles
Sine rule

Strategy: Drop a perpendicular to divide the triangle in two
and then declare definitions of the sines of the two base
angles.

h
b
b

= sinB

=sinA and ﬁ
a

sinA =asinB
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Similarly é —sinC and Z=sinB
c

bsin C = csin B
b c

sinB sinC

a b c

Sine rule sinA sinB sinC

Cosine rule

Strategy: Drop a perpendicular to divide the triangle in two
and apply the theorem of Pythagoras to both triangles.

Pythagoras W =a*>—(c—d? and W =01 -4
a?—ct+2cd— P =b0—- 4
a?=b*+ c*— 2cd

but d=DbcosA
a?=b*+ ¢ — 2bccos A

Similarly for the other combinations.

a*=b*+c* —2bccos A
Cosine rule b = a*+ ¢ — 2accos B

c2=a?>+ b*—2abcosC

Tangent rule

Sine rule a_ _ b =_°
sinA sinB sinC
therefore a= CS%IIA and b= Cs?nB
sin sinC
gt —c|SmAtSB) 4 = [snAZsnB
sinC sinC
therefore atb _snA+sinB _ Zsin((A-l—B)/z)cos((A—B)/Z)

a—b sinA—snB 25in((A—B)/2)cos((A+B)/2)
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Tangent rule

Mollweide’s formulas

Sine rule

therefore

and

but for a triangle
therefore

Mollweide’s rule

(sinB—sinC)
b—c=a ———
sin A

b—c _sinB—sinC _ 2sin((B—C)/2)cos((B+C)/2)

a sin A

b—c sin((B-0C)/2)

a cos(A/2)

c—a _ Sin((C - A)/2)
b cos(B/2)

a—b _sin((A—B)/2)

c cos(C/2)

2sin(A/2)cos(A/2)
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Newton’s rule

Furthermore

therefore

But for a triangle

therefore

Newton’s rule

B+ s
b+c=a(smB. smC]
sin A

b+c _sinB+sinC _ 2sin((B+C)/2)cos((B—0)/2)

a sin A 2sin(A/2) cos(A/2)

btc_cos((B-0)2)

a sin(A/2)

cta _ cos((C - A)/Z)
b sin(B/2)

a+b _ cos((A - B)/Z)
c sin(C/2)

3.3.3 Proof: Altitude theorem

Strategy: Use the same technique used to prove the theorem

of Pythagoras.

AABC s a right-angled triangle.
The altitude h divides AB into lengths p and g

therefore

and

and

and

£=£=cosB

c a
2

p=L ()
c

ézﬂ:cosA

c b

2
q:bT (2)
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212
a’b
From (1) and (2) pq= >
but a=csinA and b =csinB
therefore ab = ¢*sin A sin B
ab . .
and —— =c¢sinAsinB (3)
c
. h
but sin4 = 3 and (4)
2
Substitute (4) in (3) ab = Cﬁﬁ = ke
c ba a
therefore h= ab
c
_ hz _ a2b2
Altitude theorem pg=hn =—
3.3.4 Proof:Area of a triangle
Basic formula
Strategy: Divide the triangle into two right-angled triangles, whose area is equal to half a
rectangle.
AADC area = %dh c
ABCD area = L (base — d)h a
Lh
AABC area = %(base —dh+ %dh
w base — d
area = J-base - h D pase B
Angle formula
AABC area = %hc
but h=bsin A

area = %bc sin A
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Heron’s formula

Strategy: Drop a perpendicular to divide the triangle in two,
apply the theorem of Pythagoras to both triangles and resolve.

AADC R=a—-(c—-d?=v-d
a?=b*+ * — 2cd
d:b2+c2—a2

2c
b2+ 2 — g 2

ADBC ey

2c

4c2h? = 4b*c? — (b* + & — a?)?

4c2h? = 2bc + (b* + & — a?)(2bc — (b + & — a?))

4R = (b + ¢)> — a®)(@® — (b — ¢)?)

4@’ =(a+b+co)(—a+b+c)a—b+c)at+b—o)
Let 2s=a+b+c
therefore (—a+b+c)=2(s—a)

(@a—b+c)=25—b)

(a+b—c¢c)=2(s—¢)

therefore 4c*h? = 16s(s — a)(s — b)(s — ¢)

ch= 2\/5(5 —a)(s—b)(s—c¢)

but area = %ch
Heron’s formula area = \/5(5 —a)(s—b)(s—c)
Alternatively:
Area of a triangle area = Lbcsin A
A A
but sin A = 2sin— cos —
2 2

. A A . A A
area = 1 bc 2 sin— cos — = bc sin — cos —
2 2 2 2 2
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but snd = [6=06=0)
2 bc
and s A= [s=a)
2 bc
therefore area = bc\/(S —b)s=0) \/5(5 —a)
bc be

area = \/s(s —a)(s—b)(s—«c)

Area of a triangle using a determinant

Strategy: Show that the expansion of a determinant is equivalent to the area of an arbitrary
triangle.

“——Xc — xA—bc‘«xB - Xc>

YT Va
% Y~ VB
A
Ya = VB R
v
«— Xy X——> B
AABC area AABC = area of rectangle — AR — AS — AT

area = (x; — x,)(y, _)’B)_%(xB —x )y, — p)

=L = x) e = ) = 20 —x )0 — yp)

— 1 _ — .
area = 2 (x, ¥y +XpYo T Xe ¥, — X, Vo~ XY, — XcVp)

1 X, ¥y, 1
area = | x; yp 1
Y Je

[Note that the determinant produces a positive value for anti-clockwise vertices and a
negative value for clockwise vertices, which means that it can also be used to identify the
order of vertices.]
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3.3.5 Proof: Internal and external angles of a triangle
Internal angles

Strategy: Exploit the geometric properties of parallel lines
with the geometry of a triangle.

CAE is a straight line, and AD is parallel with CB.
EAD = ACB =«

Alternate angles DAB = ABC = B
Let BAC=¢

therefore EAC = a+ B+ ¢ =180°

The internal angles of a triangle sum to 180°.

External angles

Internal angles o + B+ ¢ = 180°
of a triangle
By definition at+ta' =B+pB =¢+ ¢ =180°
at+Bteo+a +B +¢ =3X180° = 540°
a' + B+ ¢ =360°

o

The external angles of a triangle sum to 360°.

3.3.6 Proof:The medians of a triangle are concurrent at its centroid

AOSR

Let R’ and S’ be the mid-points of OR and OS
respectively.

Let P be the point of intersection of the
medians RS’ and SR’.

Let T be the point where the line through O
and P meets RS.

Strategy: Prove that OT is a median of the
triangle, i.e. T bisects RS.
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Since R" and S’ are mid-points of OR and OS respectively

!

r =-r

N =

N =

and s

[~}

RP = A(ES’) for some A
Therefore p=r+1TP =r+AMs'—r) =(1—)\)r+%/\s

SP=¢ (ST{’) for some &

Therefore p= s+SP=s +te—s)=(1—g)s+ler
p=0—Nr+las=(01—g)s+ler (1)
(1—/\—%8)1‘:(1—8—%)\)8 )

since r and s are not collinear (2) can only be true if

(1—7\—%8):0:(1—8—%)\)
therefore A :% and ¢ =%

Pis 3 along RS’ and * along SR'.
We must now prove that RT = %RS and OP = %OT

As p and q are collinear
q=pup forsomepu

Using (1) p=3r+is

pr + 1 us

0 =

q=
RT and RS are also collinear
RT = @R—S for some ¢
q="1lur+Ipus —r+RT = r+o(s—r)=Q1—¢)r+es

Therefore Gur-—1+or=(p—1pns (3)
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since r and s are not collinear (3) can only be true if
Gu-l+e)=0=(¢—3n)
therefore =1 and u=2
RT = %RS and p= %q

which confirms that

The three medians intersect at a point two-thirds along each median.

3.3.7 Proof: Radius and center of the inscribed circle for a triangle
Radius
Strategy: Create the geometry formed by the intersecting angle bisectors of a triangle and

drop perpendiculars, each of which equals the radius of the inscribed circle. Apply Heron’s
area formula of a triangle to reveal the radius.

AP, BP and CP bisect angles A, B and C respectively.
r is the radius of the inscribed circle.

The tangency points are u, v and w.
Using congruent triangles, let Au=x Aw = x
uB=c—x VvB=c—x
wC=b—x Cv=b—x
AABC Perimeter =a+ b+ c=2x+ 2(c — x) + 2(b — x)
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Semiperimeter s=%(u+b+c)=x+c—x+b—x=b+c—x

area=rx +r(c — x) + r(b — x)

area=r(x+c—x+b—x)=r(b+c—x)=rs

. area AABC
S
but area = \/s(s —a)(s—b)(s—¢)
therefore ;= \/5(5 —a)(s —b)(s —c)

S

. \/(s—a)(s—b)(s—c)

S

Center

Strategy: A circle can be drawn inside a triangle such that it
touches every side. The center of the circle is the unique point
where the angle bisectors meet. The proof exploits a
relationship between the sides of a triangle and the edge
intersected by the angle bisector.

Let BC=a AC=b AB=c¢ AD=x DB=y A
DC bisects angle C and divides AB at D into lengths x and y.

Using the sine rule x __b L X _sna
sina  sinf b sinf
y _ a .Yy _ sina _ sina
sina  sin(7 — 0) a sin(w—#60) sinf
x_y .x_b
b a "y a

General triangle

AABC

Let BC=a CA=b
AB=c¢ DC=d

AE bisects angle A and CD bisects angle C.
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M (x5 yap) s the center of the inscribed circle.

Let0=<= (N, e) =<1

AD = Ac S.DB=(1—A)
Ac b

== sda=@1-M\b

A-XNc a a=( )

therefore A= b Ll=A= a
a+b a+b
AADC DM = &d ~MC=(1-¢)d
ed Ac bc c

E—= —F —
a+b+c at+b+c

xp=Axg+ (1 — A)xy

x = x, +——x
P g+b’® ag+p 4

Xy = &xc+ (1 — &)xp

— c . a+b b N a_
M g+b+c¢ ¢ a+b+clat+b B a+b A

ax, +bx, +cx,

X =
M at+b+c
ay, +by, +c
Similarly for yy Yy = W
a c
e by toy _ay thy o
Center *u a+b+c I a+b+c

Equilateral triangle

For an equilateral triangle all sides are length a.

Center X

MI%(xA+xB+xC) yMzé(yA—kyB—kyC)
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3.3.8 Proof: Radius and center of the circumscribed circle for a triangle
Radius
Strategy: The circumcenter of a triangle is equidistant from its vertices, which enables its
radius to be defined in terms of the triangle’s area.
General triangle
Chord theorem ZBAC=a and ZBMC =2«
sina = % (1)
2R
AABC area = Lch_ (2)
h. . :
?”=sma ~h, = bsina (3)
Substitute (3) in (2) area = b—csina (4)
2

Substitute (1) in (4)

abc

R -_-——
4 X area AABC
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Equilateral triangle
If AABC s an equilateral triangle with side a

a3

4

)

area =
3

R= e (6)
4 X area AABC

_a3
3

R

Right-angled triangle

_ hypotenuse
2

R

Center

Strategy: The center of the circumscribed circle is equidistant from the triangle’s vertices.
Locating this center is established by vector analysis.

General triangle

Let P be the center of the circumscribed circle of radius R.
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Then AP=BP=CP=R

AB = AP — BP

Xpp = XAp — XAB (7)

YBP = VAP ~ JaB (8)
but |IBP|| = [|AP|| = |ICP|| = R

2 2 .2 2
Xgp +yBP = Xap +yAP

Substituting (7) and (8) in (9)

Similarly

but

2 2 _ 2 2
(xAP _xAB) +(}'AP _)/AB) = Xup T Vap

2 2 2 2
Xap " 2%pXup t Xyp T Vap T2V upYap T Vap =

Xop+ Vag = 2%,5%,0 + 2V, Y 4
¢ = 2(xap Xap + YapYap)

AC = AP —CP

Xcp = Xap ~ Xac

Ycp = Yap — Vac

lICP|| = [|lAP| = R

2 2 _ 2 2
Xep T Vep = Xap T Vap

Substitute (11) and (12) in (13)

2 2 _ 2 2
(xAP_xAC) +(yAP_yAC) = Xap T Vap
2 2 2 2
Xup = 2%4pXac T Xuc T Vap T 2VapVac T Vac
2o+ Yt =2x, 0%, +2
ac T Yac apXac TV apYac

b* = 2(xgpXsc + YarYac)

Combine (10) and (14) to reveal y,p

_xABbZ = —2(x4pXapXac — XaBYapYac)

(9)

Xp+ Vip
(10)
(11)
(12)
(13)
=%+ Vip
(14)
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2 _

Xacc” = 2(XapXapXac T Xacyapyas)
2 _ 2 _ _

Xacc” — xapb® = 2(XacYapYaB — XaBYarYac)
2 _ 2 _

XacC Xapb° = 2y4p (XacYap — XagYac)

2 2
X,C0 —x,5b

2(xAc)’AB - xAByAC)

yAP

This can be represented in determinant form:

2
X0 b2
x c
Yap =3 = (15)
Xac Yac
Xap  VaB
Combine (10) and (14) to reveal x4p
—yasb* = —2(xapXacyap T YapyacYas)
Yace” = 2(XapXapYac + YarVaYac)
)’ACC2 - )’ABb2 = 2(xapXapYac — xAPxAc}’AB)
Yace” = yapb® = 2x,p(Xapyac — XacYap)
x = )’ACC2 — yABbZ
AP
z(xAByAC - xACyAB)
Yac b’
Vg €
In determinant form x,, =1.1-4B (16)
AP T 3
Xap  VaB
Xac Yac
The coordinates of P(xp, yp) are given by
Yac bz ‘
_ Yap €
X, =X, 5 | (17)
Xap  VaB
Xac Yac
2
X, b2
X c
D T (18)
Xac Yac
XaB  VaB
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(18) can be arranged to have the same denominator as (17):

Center

2 2
Vac b b AC
y 2 o
— 1 AB — 1 AB
Xp =X, + 5 Yp =V, + 5
Xap  VaB Xap  VaB
Xac Yac Xac Yac

Further developments

If the area of the triangle is already known then we can show that the determinant

Xap  VaB
Xac Yac
XaB
Xac
Therefore
and

is related to the area:

YaB (xB_xA) ()’B_)’A)
Yac (e =% e —24)
= (xg = x4)(yc — ya) — (x¢ = xa) (¥ — ¥a)
= XpYc — XpYa — XaYc t XaYa — Xcyp — Xc¥yp t Xc¥p t XcYa
=XaYp T XpYc T Xc¥a — XBYa — Xc¥VB — Xa)Yc
Xy Va 1
=|x; yz 1|=2Xarea AABC
X Ve 1
Yac bj
Jap €
= + 117247 1
Yp T XA area AABC
bj X0
¢® x
= + 11" "AB |
Ve = V4T W rea NABC

Similarly, if the radius R of the circumscribed circle is known, we can exploit the relationship

AABC

Center

abc
area = —
4R
2 2
xP = xA —|—_R yAC b2 yP = }/A + - bZ xAC
abc| y,; ¢ abc|c” x,,
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Equilateral triangle

2
All sides equal a area AABC = 2 ;/g
Yac bj
Yap €

x, =x, +11248 1
P 4 4 area AABC

2
Yac 2

y a
x, = x, +1-42

2 2
ay,.—ay
x =x + AC AB

P A az\/g

x = +yC_yA_yB+yA

P A \/g

3

3
Center Xp = X, +?(}’c_)’3) Jp :)’A+?(x3_xc)
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3.4 Quadrilaterals

3.4.1 Proof: Properties of quadrilaterals

Quadrilaterals embrace the square, rectangle, parallelogram, rhombus, trapezium, general
quadrilateral, tangent quadrilateral and cyclic quadrilateral. Proofs are given for some of the
more useful formulas and we begin with the square.

Square
Diagonal d= a\/g

_ 2 _ 1 32
Area A=a"=,d
Inradius r=

a
2
Circumradius R= % (see the proof for a rectangle)
2

Rectangle
Diagonal d=+a*+b’
Area A=ab d b
. . d
Circumradius R=—  (seethe proof)
2 a
Parallelogram
Diagonals d = \/az +b* —2abcosB  (cosine rule)
and d, = \/a2 +b* —2abcosa

d12 + d; = 2(a® + b*) — 2ab(cos & + cos B)

but a+ B =180°
therefore d} +d; =2(a* +b*) (parallelogram law)
Altitude h=bsina

Area A =ah
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Rhombus

A rhombus is a parallelogram with equal sides.

Diagonals

therefore
Altitude

Area

Trapezium

d, = 2a cos% and d, =2a sin%

2 2 2
d, +d2 = 4q
h=asina

I S
A—ah—asmoz—%dld2

A trapezium has one pair of parallel sides.

Diagonals

and
Altitude

Area

d = \/a2 +b* —2abcosB (cosine rule)

d, = \/a2 +d* —2ad cosa
h=dsina=bsinf
A=%(a+c)h

General quadrilateral

Area A= %dld2 sin @ (see proof)
A= i(b2 +d* —a* — c*)tan@ (see proof)
A=1Lad2d} — ¥ +d* —a> —c?) (seeproof)
Tangent quadrilateral
AB =a
BC=1b
CD=c

DA =
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Because the intercepts of two tangents from a single point to a circle are equal:

|AE| = |AH|, |EB| = |BF|, |FC| = |CG|, |GD| = |HD|

therefore |AE| + |EB| + |CG| + |GD| = |BF| + |FC| + |AH| + |HD|
and atc=b+d

Area A:%m-k%rb-k%rc-l-%rd:%r(a+b+c+d)

Area A =sr

where s=%(a+b+c+d)

Cydic quadrilateral

In a cyclic quadrilateral the sum of the opposite interior angles equals 180°, which enables the
vertices to reside on the circumscribed circle.

The vertices A, B, C, D lie on the circumference of a circle, radius R.

Let /A=a and 2C=p
The chord theorem confirms /BOD = 2/BAD = 2a (the internal angle)
Similarly /BOD = 2/BCD =2 (the external angle)
but 2a + 28 = 360°
therefore a + B =180°
For any quadrilateral A= \/(s —a)(s —b)(s — c)(s — d) — abed cos* &
where 8=%(a+B) and s=%(a+b+c+d)
therefore A=Js—a)s—b)s—c)s—d)
It can also be shown that R=1 (ac + bd)(ad + bc)(ab + cd)

N s—a)s=b)s—c)s—d)

and the diagonals are

L \/(ab+cd)(ac+bd) nd d = \/(ac+bd)(ad+bc)
! ad + bc 2 ab + cd

and dle =ac+ bd
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3.4.2 Proof:The opposite sides and angles of a parallelogram are equal

Definition: A parallelogram is a quadrilateral in which both pairs of sides are parallel.
Strategy: Divide the parallelogram into two triangles and prove that they are congruent.

By definition AB is parallel to DC

and AD is parallel to BC

also BD is a line intersecting all the lines
As ABD, CBD

£ABD = /ZCDB = a (alternate angles)
£ ADB = £ CBD = 3 (alternate angles)

BD is common to both triangles

therefore As ABD, CBD are congruent

which implies that AB=DC and AD= BC

ie. the opposite sides of a parallelogram are equal
and /ABC= /ADC=a + B

ie. the opposite angles of a parallelogram are equal

Since As ABD, CBD are congruent they have the same area and must bisect the parallelogram.

Corollary

1. If one angle of a parallelogram is a right angle, all the angles are right angles.
2. If two adjacent sides of a parallelogram are equal, all the sides are equal.

3.4.3 Proof:The diagonals of a parallelogram bisect each other

Strategy: Prove that triangles AEB and CED are congruent.

As AEB, CED
AB = DC (opposite sides of a parallelogram are equal)
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LEAB = LECD = a (alternate angles)
£/ EBA = £EDC = f3 (alternate angles)

therefore As AEB, CED are congruent
which implies that AE=EC and BE=ED
ie. the diagonals of a parallelogram are bisected

3.4.4 Proof:The diagonals of a square are equal, intersect at right angles
and bisect the opposite angles

Definition: A square is a quadrilateral with both pairs of opposite sides parallel, one of its
angles a right angle and two adjacent sides equal.

Strategy: Prove that triangles ADC and BCD are congruent.

As ADC, BCD
AD = BC (opposite sides of a parallelogram)
DC is common to both triangles
£ADC = £BCD (corollary: opposite sides of a parallelogram)
therefore As ADC, BCD are congruent
which implies AC = BD
ie. the diagonals of a square are equal
As AED, CED
AE = EC (diagonals bisect each other)
AD = DC (sides of a square)
ED is common
therefore As AED, CED are congruent
which implies £ AED = £ DEC

These are right angles and the diagonals intersect at right angles.

Since As AED, CED are congruent
/ADE = / CDE
which implies £ ADC is bisected

ie. the diagonals of a square bisect opposite angles
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3.4.5 Proof: Area of a parallelogram

Strategy: Prove that As BCE, ADF are congruent.

F A E B
D C
ABCD is a parallelogram
CE and DF are equal and perpendicular to AB
As BCE, ADF
£ CBE = £DAF (corresponding angles)
£/ DFA = £ CEB (right angles)
CB = DA (opposite sides of a parallelogram are equal)
therefore As BCE, ADF are congruent
Therefore quadrilateral ADCE + ABCE = quadrilateral ADCE + AADF
ie. parallelogram ABCD = rectangle ECDF

Therefore the area of a parallelogram is equal to the area of the rectangle with the same base
and same height.

area of a parallelogram = base X height
Corollary

Parallelograms having the same base and height share a common area.

3.4.6 Proof:Area of a quadrilateral
Using lengths of diagonals

Strategy: Divide the quadrilateral into four triangles and sum the individual areas.
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Let AC=d,=s+q and BD=d,=r+p
Area of ABCD = sum of the areas of triangles AT}, AT,, AT;, AT,

area AT, = >spsin6

area AT, = 1 pqsin(m — 60) = 1 pqsin 6
area AT, = 2 qrsin6

area AT, = Lrssin(m — ) = Lrssin6
area of ABCD = %(sp + pq+qr +rs)sin6

=1(p+r)g+s)sind

Area of ABCD = %dld2 sin 0 0

Using lengths of sides

Strategy: Apply the cosine rule to develop a relationship between the squares of the sides.
a’>=s*+ p? — 2pscosf
=17+ q*—2rqcosf
a?+E=r+s+p*+ q* — 2pscosh — 2rq cosf
b* = p* + q* — 2pq cos(m — 0) = p* + ¢* + 2pq cos O
=1+ s —2rscos(m — 0) = 1* + s2 + 2rs cos 6
P2+ d? =1+ s+ p*+ q* + 2pq cos O + 2rs cos O
b* + d* — (a® + ¢*) = 2pq cos 6 + 2rs cos O + 2ps cos O + 2rq cos 6
b+ d* — a* — ¢ = 2(pq + rs + ps + rq)cos0
b*+d* —a*— & =2(p +1r)(q + s)cosb
b+ d® — a> — 2 = 2d,d, cos6
bV +d-a -
- 2cosf

dd,

Substitute (2) in (1)

(2)

2222
area of ABCD %(b d —a —c sin 0

2cos6

Area of ABCD = i(b2 +d* — a* — *)tan 6 (3)
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Using lengths of diagonals and sides

Strategy: Develop (2) by expressing the trigonometric function in terms of the diagonal
lengths.

bV +d-a -

dd
12 2cos0
d2d2 — (bz +d2 _a2 _C2)2 _ (b2 +d2 _a2 _C2)2 SeC20
b 4cos*6 4
but 1 + tan®0 = sec?6

4d12d22 =®* +d* —a® — *)*(1 + tan’6)
=M +d* —a* - + (B +d* —at — ) tan’0

4d12d22 —W*+d*—a* =) =P +d*—a® —c*) tan’0

Jadd: — O+ & —a> — P = (7 +d> —a’ —P)tan0

Using (3)

\/4d12d22 —(B* +d* — a* — c®)* = 4 X areaof ABCD

Areaof ABCD = i\/4d12d§ —* +d* —a* —c*)?

3.4.7 Proof: Area of a general quadrilateral using Heron’s formula

Strategy: Use the cosine rule to create an equation in the form of the difference of two
squares.

Apply the cosine rule to AABD and ABCD
a? + d* — 2ad cosa = f* (1)
b* + ¢* — 2bc cos B = f? (2)
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Subtract (2) from (1)

a* + d* — b* — ¢ = 2(ad cosa — bc cos B) (3)

area AABD = ladsina (4)

area ABCD = >bcsin 8 (5)
Add (4) and (5)

area ABCD = Aq = %(ad sina + bc sin B) (6)

(4A,)* = 4(ad sina + bc sin B)° (7)
Square (3)

(a* + d* — b* — )? = 4(ad cosa — bc cos B)? (8)
Add (7) and (8)

16A; +(a* +d* —b* — ¢*)* = 4(ad sina + be sin B)* + 4(ad cos a — be cos B)*

= 4(a’d* sin” a + bc” sin® B + 2abcd sin asin B
+ a*d” cos’ a + b*c? cos® B + 2abcd cos a cos B)

= 4(a*d® + b*c® + 2abcd(sin a sin 8 + cos a cos 8)) 9)

Substitute cos(a + 8) = cos2e = cosa cos 3 — sina sin B in (9)
(note the substitution 2 = a + B)

= 4(a’d® + b*c* — 2abcd cos 2¢)
16A; +(a@* + d® —b* — *)? = 4(a*d* + b c* — 2abed cos 2¢) (10)

Substitute cos 2& = 2cos’s — 1in (10)
16A; + (@ +d® —b* — *)? = 4(a*d® + b*c® — 2abcd(2 cos’ & — 1))
= 4(a®d® + b%c* — 4abed cos® & + 2abed)
= 4((ad + bc)* — 4abcd cos® €)
16A; = 4(ad + bc)* — (@ + d* —b* — ¢*)* —16abcd cos’ &
16A; = (2ad + 2bc)* — (a* + d* — b* — ¢*)* —16abcd cos’ e
Solve the difference of two squares
16A; = (2ad + 2bc + a* + d* —b* — ¢*)(2ad + 2bc — a* — d* + b + ¢*) — 16abcd cos* &

16A; =(@a+b—c+d(a—b+c+d(a+b+c—d)l(—a+b+c+d) —16abcdcos’e



216 Geometry for computer graphics

Substitute2s =a+b+c+d

16A; =16(s — ¢)(s — b)(s — ¢)(s — a) — 16abcd cos’

A, = (s = a)(s = b)(s — O)(s — d) — abed cos”e

For a cyclic quadrilateral & + 8 = 180° therefore £ = 90° and cos 90° = 0

A, == a)s—b)—o)s—d)

3.4.8 Proof: Area of a trapezoid

D c C
d m b
h
A E a F B

Area ABCD

area = area EFCD + area AED + area FBC

area =ch+1rh+71sh

area = h(c + 1 (r +5)) (1)
but a=c+r+s
therefore r+s=a—c (2)

Substitute (2) in (1) area = h(c + %(a —0))
area = %h(a +¢)

Let m=J(a+c)

Area =m-h where m = %(a-f—c)
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3.4.9 Proof: Radius and center of the circumscribed circle for a rectangle
To find the radius

Strategy: The circumcenter of a rectangle is located at the intersection of the rectangle’s
diagonals, which can be located using the Pythagorean theorem.

a’ + b* = (2R)* = 4R’

R= %\/az + b2

R= %\/(XB - ’CA)2 +(p _yA)Z + (%, _xc)2 + (g _)/C)z

or

For a square b = g, therefore

=%\/5a

To find the center

Strategy: Show that the rectangle’s diagonals are diameters of the circumscribing circle.
£ A and Z B are right angles, therefore AC and BD must be equal diameters of the
circumscribing circle (Chord theorem). The point P must be the center of the circle.
The coordinates of the center P are given by

—1 —1
x, = 5(x, +x.) or = E(xs +x,)

Yo =5ty or =1(yptyp)
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3.5 Polygons

3.5.1 Proof: The internal angles of a polygon

Strategy: Divide the polygon into triangles and analyze their internal triangles.

Let the number of sides to the polygon be n.
Internal angles of a triangle 60; + ¢; + @; = 180° 1<i<n

n
For one revolution 2 a; = 360° (1)
i=1

Internal angles of n triangles 2(01. + ¢ +a,)=180n
i=1

therefore 2(01. +¢)+ Zai = 180n (2)
i=1 i=1

Substitute (1) in (2) > (0, + )+ 360° = 180n
i=1

therefore 2(01. + ¢,) = 180n — 360°

i=1

The internal angles of an n-sided polygon sum to 180(n — 2)°.

3.5.2 Proof: The external angles of a polygon

Strategy: Exploit the relationship for the internal angles
of a polygon for the external angles.

Let the number of sides to the polygon be n.

«a; is an internal angle, and «, is the complementary external angle
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therefore a; + a, = 180°

With n such combinations  n(q; + «,) = 180n

and for n internal angles na; = 180(n — 2)

therefore 180(n — 2) + na, = 180n
180n — 360° + na, = 180n

therefore na, = 360°

The external angles of an n-sided polygon sum to 360°.

3.5.3 Proof: Alternate internal angles of a cyclic polygon

Strategy: Divide the polygon into triangles and analyze their angles.

Let the number of sides to the polygon be n.
The internal angles of a triangle in the polygon
29i+ai=180° 1=sisn

n
For one revolution Zai = 360° (1)
i=1
n
For n triangles 2(201. +a;) =180n
i=1
n n
220, +Y.a, =180n (2)
i=1 i=1
n
Substitute (1) in (2) D20, +360° = 180n

i=1

n
D26, = 1801 — 360°

i=1
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therefore ZZGi =90(n—2)

i=1
i.e. (01 + 02) + (03 + 04) + (05 + 06) + .o + (0n71 + 91’!) - 90(1’1 - 2)
or (0, + 05) + (0, + 05) + (05 + 0;) + -+« + (0, + 0;) = 90(n — 2)

[where n = 4 and is even]

The alternate internal angles sum to 90(n — 2)°.

3.5.4 Proof: Area of a regular polygon

Strategy: Given a regular polygon with n sides, side length s, and radius r of the
circumscribed circle, its area is computed by dividing it into n isosceles triangles and
summing their total area.

A | B
The isosceles triangle OAB is formed by an edge s and the center O of the polygon.

1
2S

o tan 2

n

therefore h=3s cot(%)

area of AOAB = %sh =1g? cot(f)

1
4

Area = Lns? cot(l)
4 n

But 2 gn(=)
r n

therefore % s = rsin(%)
e of)
h= rcos(f)
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therefore area of AOAB = %sh =’ sin( ’T)cos(%) = %rz sin(ZT’T)

n

Area = %an sin (27’7)

3.5.5 Proof:Area of a polygon

Strategy: Divide the polygon (e.g. a triangle) into three arbitrary smaller triangles. Then
derive the area of the polygon from the areas of the individual triangles.

Py
Q

Let P}, P,, P; be the counter-clockwise vertices of a triangle. Also, let P(x, y) be an arbitrary
point inside AP,P,Ps.

. . xl yl 1
The area of a triangleis area =1|x, y, 1
Xy, 1

therefore,

area of AP,P,P; = area of AP,P,P + area of AP,P;P + area of AP;P,P

X, yll X, y21 X, y31
AreaAofAPlePSZ%x2 ¥, 1+% X, 1_1_% x oy 1
x y 1 x y 1 x y 1
area:%(xlyZ+xyl+x2y_x1y_x2y1_xy2+x2y3+39/2+x3y
XY T XY, T XYty Xy, txy - Xy —xy; — %))
area=%(x1y2+x2y3+x3yl—xzyl—xsyz—xlyS) (1)
1 x %
Area =|x, y, 1
X, Y, 1

From (1) the area of a polygon with # sides is

n—l1
— 1 —
Area = 2 2 (xi)/i+1(m0d n) yixi+1(mod n))
i=0
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3.5.6 Proof: Properties of regular polygons

Let n be the number of sides to the regular polygon, and
s, be the edge length.

R;and R are the radii of the internal and outer circles
respectively.

_360°
n

Apex angle is B,

Let the base angle be ,,

The internal angles of a triangle 2, + 8, = 180°

360°
n

=180°

200 +
n

The base angle is a = (1 - z)90°

" n

Inradius R,
s
i = tan(—") = tan(l)
ZRI 2 n
R; Rc
R = S—”cot(ﬂ)
T 2 n
R 7
also L= cos(&) = cos(l)
R 2 n
C
The inradius R, = R, cos(%)
Circumradius R,
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Aread,

Calculate the area of one isosceles triangle in the regular polygon.

LR =icot(l)
2T 4 "

)

2
S

Area of the polygonisA = n Z” cot (%)

or

or

A
N

ns R cos(
n- C n
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3.6 Three-dimensional objects

3.6.1 Proof:Volume of a prism

Strategy: The approximate volume of an object can be determined by cutting it into a large
number of thin slices and summing their individual volumes. Integral calculus develops this
idea by making the slices infinitesimally thin and securing a limiting value.

b
In general, one can write V= j A(x) dx

a —— —

area of the thickness

cross-section  of the slice

If the volume is considered as an infinite set of slices, it is unaffected by any linear or
rotational offset applied to the slices, because any offset will not alter the individual
volume of a slice. This is known as Cavalieri’s theorem, after Bonaventura Cavalieri
(1598-1647).

This implies that objects with the same cross-section and height possess equal volumes.
For example, the following objects have equal volumes:

——
\4
A

where volume V = Ah

The volume of any prism obeys this formula.

General prism
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Parallelepiped

V=Ah
Rectangular parallelepiped
Vv
e r
A=ab j A b
V = abh “

3.6.2 Proof: Surface area of a rectangular pyramid

Strategy: Divide the surface area into its component parts.
]

Slant heights H, = 2 + ibz and H, = W+ iaz

Surface area A = area of base + area of 4 triangles
A=ab+ (%aH‘Z + %aHa + %be + %be)

A =ab + aH, + bH,

A=ab+ a\/h2 +1p? +b\/h2 +1a?

Surface area A =ab+ %(a\/4h2 +b* + b\/4h2 +a?)

whena=0b A=ad>+aVJah® +d*
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3.6.3 Proof:Volume of a rectangular pyramid

Strategy: Use integral calculus to find the volume of a
pyramid by summing vertical cross-sections.

Let the dimensions of the pyramid be

base:a X b and height: h

Area of slice A, =4yz
Volume of slice Vs = 4yz6x
but _y b/_2
h—x h
b Y
therefore Y=o (h—x)
Y%
2 " X
Similarly p i i % N
a
therefore z=—h—x)
2h
. ab 2
Volume of slice V.= h—z(h —Xx)"6x

= Z—f(hz —2xh + x*)éx

b ¢h
Volume of pyramid = Z_zjo (h* — 2xh + x*)dx
b s 1"
= a—[hzx—hxz +"—]
K? 3
0
3
= a_b[h3 — K +h_]
K? 3
V= %abh

Volume of a pyramid = >abh

Note that the formula can be expressed as V = 1 area of base X height
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3.6.4 Volume of a rectangular pyramidal frustum

Volume of frustum = volume of whole pyramid — volume of top pyramid
. =L1AH—LA(H-h) 0
=TH(A —A)+1hA,

A, _H—h

A H

therefore \/7\/—\/7 (2)

Substitute (2) in (1) 74 % \/_ (4-4 )+ LhA,

SN
h[%@—@(@+@w

Ve = LTh(A + A, +/AA4,)

but

0 =

Volume of a frustum = %h(A1 +A, +AA)

3.6.5 Proof:Volume of a triangular pyramid

Strategy: Use the volume of a pyramid to derive the volume
of a triangular pyramid.

Volume of a pyramid is 1 area of base X height

Area of base is %”a X b|
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Volume of pyramid is 3 5llaxbllh
xa yu zﬂ
Volume of a parallelepiped is laxbl|xh=|x, » gz,
xC yC ZC

1 xa ya Zﬂ

The volume of a pyramid is 1% Y %

xC yC ZC

Note: The volume is positive if the vertices A, B, C appear clockwise from O, otherwise it is
negative.

3.6.6 Proof: Surface area of a right cone

Strategy: Develop the lateral surface area of a
right cone from the sector of a circle.
The sector marked A; will form the lateral
surface area of a right cone with radius r and 0
slant height s.
Area of sector = m71'1’2 =TS e
2mr

27rs

Lateral surface area is A = 7rs

Total surface area with base A = 7rr(r + s)

3.6.7 Proof: Surface area of a right conical frustum

2

27y

Lateral surface area of the frustum = lateral area of whole cone — lateral area of top cone
Ap = 7S — 7ry(S — )
Ap = 7(S(ry — 1) + s1) (1)
S
S—s

h
but - =
r2
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ns
therefore §=
hn
. . ns
Substitute (2) in (1) A =m (r—r,)+ s,
=
Lateral surface area Ap = ms(ry + 1y)
Total surface area A=a(r?+r?+s(r; + 1)

3.6.8 Proof:Volume of a cone

Strategy: Use integral calculus to find the volume
of a cone by summing vertical cross-sections.

Cone with radius r and height k.
Area of disk = 7y?

Volume of disk = 7y*8x V4

Jy _r

but e x
r Y
therefore y= Z(h —Xx)
2
Volume of disk = 77(% (h— x)) Sx
war® 2

Volume of cone =1, h_z(h —2hx + x°)dx

2
%J:(hz ~2hx + x%)dx
777'2 x3 "
= —|Wx—h’ +=—
K2 3

2 3
- i[;ﬁ K +h_J
W 3

_ wr’h
3

Volume of a cone = %wrzh
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3.6.9 Proof:Volume of a right conical frustum

(1)
n_H —h
but . T
r
therefore H=——h 2)
h=h
i i =1 N2 2y, .2
Substitute (2) in (1) v, = ;ﬂh( @ =)+, ]
h=hn
r(r—r)r +r
:éﬂh[ 14 rz_xrl ) +J
1 2
V., = %Wh(?’lz +1 +rr)

Volume of a right conical frustum = %7‘rh(r12 + r22 +rr,)

3.6.10 Proof: Surface area of a sphere

Strategy: Use the integral formula for computing the surface
area of revolution.

The equation of the 2D curveis y = \r* — x’

The general equation for the surface area of revolution is

s=2m]" a1+ (/)] dx
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therefore, the surface area of a sphere is

Surface area of a sphere = 4712

Surface area of a spherical segment

We can compute the surface area of a spherical segment by
integrating equation (1) above over different limits. The limit
range is determined by the segment thickness # and the new
limits become x; to x,:

Surface area of segment = 27r[x] iz
1
= 2mrh

Surface area of a spherical segment = 27rrh

3.6.11 Proof:Volume of a sphere

Strategy: Use integral calculus to find the volume of a sphere by
summing vertical cross-sections.

Area of disk = )2
Volume of disk = 7y*8x
but yY=r—-x
Volume of disk = 7 (r* — x%)éx

.

(1)
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Volume of sphere V = '[r w(r? — x*)dx

r r
V=m rzx—x—3
3
L -r
= TS—i-FrS r
3
= 2r3—£
3

3
Volume of a sphere = 47

Volume of a spherical segment

The volume of a spherical segment is computed by integrating
equation (1) above over different limits. The limit range is
determined by the segment thickness h and the radii of the
circular ends r; and r,. The limits become h; to & + h;:

V=7'r|‘r2
hl

=a(r’(h+h)=L(h+h) -
=17G3r’h—(h+h)’ +h)

5 7t

7

x— —

rzh1 + %hf)

= Lm(3r’h— b’ — 3h°h — 3hK])
= Lmh(3r® — h* — 3hh, — 3h})
but r=ri+(h+ h)?
and r=ri+n

Subtract (4) from (3) hh = %( 2 _ TZZ — 1)

Substitute (5)in (2) vy = %ﬂ.h(g,r _hZ_%( r? —h*)—3h%)
= Lah(6r* + h* + 3r; — 3" — 6h;)
but hi=r*—r}
V= %77]1(61’ +h* +3r} =32 —6r* +6r’)
V =Lmh(3r? +3r] + %)

(1

(2

3)
4)
©)
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Volume of a spherical segment = L (31 + 31 + h?)

If one of the radii is zero the volume becomes

Volume of a spherical segment = %wh(Srf +h?)

3.6.12 Proof: Area and volume of a torus

Strategy: Guldin’s first rule states that the area of a surface
of revolution is the product of the arc length of the
generating curve and the distance traveled by its centroid.
Guldin’s second rule states that the volume of a surface of
revolution is the product of the cross-sectional area and
the distance traveled by the area’s centroid.

Surface area
Length of the cross-section = 27rr
Path of the centroid = 27R
Surface area = 47%rR
Volume

Area of the cross-section = 712

Path of the centroid = 2@7R

Volume of torus = 27%r*R

3.6.13 Proof: Radii of the spheres associated with the Platonicsolids

Strategy: Each Platonic solid is constructed from a common regular polygon. The resulting
symmetry ensures that every vertex lies on a circumsphere. Similarly, a mid-sphere exists
which touches the mid-point of each edge. Thirdly, an in-sphere exists which lies on the
mid-point of every face. The radii of these spheres can be calculated by considering the
geometry associated with a portion of a single Platonic object: an octahedron.

Let q = number of edges associated with a vertex
p = number of edges associated with a face
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R, = radius of the circumsphere touching every vertex

R;,; = radius of the mid-sphere touching the mid-point of each edge

R;, = radius of the in-sphere touching the mid-point of each face
Let s = length of an edge

O = center of the octahedron

E = mid-point of the edge AB

C = mid-point of the face ABD

R, = radius of the circumsphere

R;,; = radius of the mid-sphere

R;, = radius of the inner sphere
2 = half the dihedral angle

AEOA, AEDA, ACOE, ACOA are right-angled triangles.
ADAB is an equilateral triangle.

Therefore /DAB=" scAB=L  spca=Z
p 2p p
Let JAOE=¢  ZCOA=40
but 2408 =27
q
therefore b= T
q

The objective of the proof is to express R, R;,, R;,; in terms of p, g and s.
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Let us introduce two intermediate equations
sin’ (1) + cos’ (1) =1
P P

sin? (1) + cos? (l) =1
q q
therefore

where k is some constant.

We already have a triangle AEOA as follows

but a similar triangle AE'O’A’ can be created if we make sin(¢) =

k

sin 7 )

o’ cos(3)

Comparing the two similar triangles we discover that

K _si
sin (l) Rc
q
therefore R _ Lsin(ﬂ)
s 2k q
k s/2
and =—
cos(%) R,
R
Therefore int — Lcos(ﬂ)
s 2k P

E'
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a2z _ o 2(m
= o 5] 3
R sin £
therefore - =
s 2\/sin2(£)—cos2 (ﬂ)
q
and
Ry~ «[5)
s . 2 2
2\/s1n (ﬂ)—cos (ﬂ)
q P
2
From ACOE R =R, —|2|ct?|Z
mn ni 2 p
therefore
R cot(%)cos(ﬁ)

o) ]

B}

We can also express R, in terms of R;, as follows:

and

therefore

“ |h>U

sin

7)

2k

cot

(7)eos(5)

2k

RC = Rl.n tan(%)tan(ﬂ)

q

Compute R;,, R;,; and R, for the five Platonic objects.

Tetrahedron

p=3 q=3 s=1
Js
R, = —=10204124
2
V2
R = — =0.353554
nt 4
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Cube

Octahedron

Dodecahedron

Icosahedron

ﬁ = 0.612372
4

R =
[

L, =1=05
V2
R, =-— = 0707107
2
V3
R =~ = 0.866025
2

R. = — =0.408248
in 6
Rint = % =05
2
R = —=10.707107
¢ 2

R, = L4250 +110v5 =1.113516

R, =L1y14+ 65 = 1309017

R = i\llS + 6\/5 = 1401259

p=>5 q=>5 s=1
R, = L\42+18V5 = 0755761

in
R, =Ly6+245 = 0809017

R =1\10+2v/5 = 0951057
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Calculating the dihedral angles

R
From ACOE we see that —~ = Sin(%) where A is the dihedral angle.

therefore

Tetrahedron

Cube

Octahedron

Dodecahedron

Icosahedron

3.6.14 Proof: Inner and outer radii for the Platonic solids

int

ko ki
R, ot(3)es()

e (x)-cos(z)

R

mnt

cos( )

aR=E=r

Rmt sm(%)

A = 2sin | 50 ) 70 528878°
sin 60°

A =2sin [ L8 | g
sin 45°

A = 2sin7Y S\ 109471201
sin 60°

A = 2sin~ [ <59 | 116.565051°
sin 36°

A =2sin ! 3 | 135 180685°
sin 60°

Strategy: Each Platonic solid is constructed from a common regular polygon. The vertices of
each solid lie on a sphere whose radius R, is calculated as shown below.

Using the geometry of a cube as an illustration, a parametric formula is derived which can
be applied to each solid in turn. The outer radius is expressed as a ratio to the edge length s.
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Let

AACD

ADCB

therefore

and

therefore

therefore

therefore

and

Tetrahedron

C = center of the cube

s = edge length

B = half the dihedral angle

R; = radius of the inner sphere
R, = radius of the outer sphere

R+ 02 =2

Z* +(s2)’ = R
R’ +b* +(s/2* =R’

tan 3 K
anf = —+

b
R;,=btan B

b’ tan’ B+b* + (s/2)’ = R
b (tan® B+1) + (s/2)* = Rj

tany = —
YT

tan’ B +1 Rj

tan’y (s/2)*
R + tan?
X hy 1+ tan” B
s/ tan®y

[

[

1+ 1+ tan’B
tanzy

y=60° B =70.528779°2

R _1 ) 1405 5
s 2 3 2
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R
— =0.612372
S

Cube = 45° = 90°/2
R_ £
s 2
—£ = 0.866025
s
Octahedron v = 60° B = 109.47122°/2
R, [,1t2_ 12
s 2 3 2
—2 = (.707107
s
Dodecahedron = 36° = 116.56505°/2
& _1 1 + 2. 618
s 2 V 0527864
—2 =1.4012585
s
Icosahedron y = = 138.189685°/2
R, _ ) |, 1+6854102
T 2

R
— = 0.9510565
N

The outer sphere of radius R, intersects all the vertices, whereas the inner sphere of radius R;
touches the center of each face.

Using the original diagram

NACD R+ b =2

b
but — =
u 7 cos 3
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therefore

therefore

But

therefore

therefore

Tetrahedron

Cube

Octahedron

7= b
cos B
bZ
R +b =—
cos” B
b’ 1
Rl =———b"=b"| ———1
cos cos
— =tanvy
b= s/2
tany
2% 1
sz(S/z) ——1
tan” y \ cos
2
Rl.2= 52 tan® 8
4tan” vy
B _ tan’(B)
s 4tan’(y)
R _ tanfp
s 2tanvy

y=60° B =70.528779°/2

= —————=10.204124

& tan 35.264389°
s 2 tan 60°

y =45 B =90°2

R, tan45°
e 2 tan 45°

y=60° B =109.47122°/2

R tan5473561°
Do ARRIO 0408248
e 2 tan 60
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Dodecahedron v = 36° B = 116.56505°/2
R .28253°
5 38283 ) hissie

e 2tan 36°

Icosahedron v = 60° B = 138.189685°/2
R tan 69.094843°
S AP — 0755761
e 2 tan 60°

3.6.15 Proof: Dihedral angles for the Platonic solids

Strategy: Each Platonic solid is constructed from a collection of identical regular polygons.
The tetrahedron, octagon and icosahedron are constructed from equilateral triangles; the
cube from squares; and the dodecahedron from pentagons. The angle between two faces
sharing a common edge is called the dihedral angle. This angle is different for each
Platonic solid.

To compute the dihedral angle, imagine one face lying on the ground plane with one
common edge aligned with the negative z-axis. A vector v, forms a neighboring edge.
The face containing v, is rotated such that v; becomes v,. The angle between v, and v,
becomes the dihedral angle.

Tetrahedron

60°
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but

and

therefore

Also

therefore

therefore

Cube

By inspection

Octahedron

P(x,y,z) = P(cos 30°, 0, sin 30°)
Vil = [[val| = 1

x cosy —siny 0 | cos30°
y'|=]|siny cosy 0 0
V4 0 0 1| sin30°

x" = cos 7y cos 30°
y' = sin 7y cos 30°

z' = sin 30°

v ev, =|lv || - [[v,|[cos & = xx" + yy' + 2z’

cos @ = cosy cos?30° + sin?30°

0 equals 60° (internal angle of an equilateral triangle)

_ cos 60° — sin” 30°

cos?30°

1
Cos 3

Dihedral angle y = 70.52878°

1

A square: one side of a cube

Dihedral angle y = 90°

60° 60°
1

An equilateral triangle: one side of an octahedron
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P(x,y,z) = P(cos30°,0,sin 30°)

but [lvill = [[v2ll = 1
and P1(17 07 0)

v, is aligned with one side of the square cross-section

x’ cosy —siny 0 || cos30°
and y' |=|siny cosy 0 0

V4 0 0 1 || sin30°
therefore x" = cos?y cos 30°

’

y' = siny cos 30°

z' = sin 30°
But vV = i
and v ev, =|[v, ]| - [lv,[|cos & = xx" + yy' + 2z’
therefore cosf = cosy cos 30°

0 equals 60° (internal angle of an equilateral triangle)

cos60° \/5

cos 30° 3

therefore cosy =

y = 54.73561° [y is half the dihedral angle]

Dihedral angle = 2y = 109.47122°

Dodecahedron

S/

;o/éC’

108°

A pentagon: one side of a dodecahedron
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but

and

therefore

and

therefore

therefore

Icosahedron

P(x,y,z) = P(sin72°0, —cos 72°)

[vill = [[v2ll = 1
x' cosy —sinvy
y'|=]|siny cosy
z 0 0

x' = cosysin72°
y' = sinvy sin72°

’

z' = —cos72°

0|l sin72°
0 0
1 || —cos72°

viev, =|v,||-|lv,||cos 6 = xx' + yy' + zZ’

cos@ = cosysin®72° + cos?72°

0 equals 108° (internal angle of a regular pentagon)

c0s108° — cos® 72° €08 72°

cosy = .
sin” 72°

 cos72°—1

Dihedral angle y = 116.56505°

60°

60° 60°
1

An equilateral triangle: one side of an icosahedron
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Y
o p
P(x, y,z) = P(cos 30°,0, sin 30°)
but [lvill = [[v2ll = 1
x' cosy —siny O || cos30°
and y' |=|siny cosy 0 0
V4 0 0 1 || sin30°
therefore x" = cos?y cos 30°
y' = sinvy cos 30°
z' = sin30°
v ev, =|lv,|| - ||v,|[cos® = xx + yy' + 2z’
therefore cos@ = cosy cos?30° + sin?30°
0 equals 2 X 54° = 108° (internal angle of a regular pentagon)
cos108° — sin®30°
therefore cosy=————

cos?30°

Dihedral angle y = 138.189685°

3.6.16 Proof: Surface area and volume of the Platonic solids

Surface area

Strategy: Each Platonic solid is constructed from a common regular polygon. The
tetrahedron, octagon and icosahedron are built from equilateral triangles; the cube from
squares; and the dodecahedron from pentagons.

The area of a regular polygon with p edges of length s is given by

— 142 k.
Area = - ps cot(P)

The total surface area for fsides is

A= ifps2 cot(%)
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or we can express the surface area A as a ratio to s

S iprer(z)

A
Tetrahedron == i X 4 X 3 cot 60° 1.732051
s
A . o
Cube —2=Z><6><4cot45 6
s
A 1 o
Octahedron - =3X 8 X 3cot60 3.464102
s
A 1 o
Dodecahedron - =7 X 12 X 5cot 36 20.645728
s
A 1 o
Icosahedron =3 X 20 X 3 cot 60 8.660254
s

Volume

Strategy: A Platonic solid can be visualized as a collection of pyramids with a base at each
face and a height R;, (radius of the inner sphere).

Volume of a pyramid v, = 1 Area, R,

Volume of a Platonic solid v=f Vp
V =1fXArea, R

in

but Area,,, =+ ps’ cot (%)

\% 4X3

Tetrahedron — = cot 60° £ 0.117851
S 12
\%4 6X4 1

Cube — = cot 45° — 1
$ 12
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V. 8X3

Octahedron - = cot 60° 0.471405
$ 12
V. 12X5 1

Dodecahedron | — = cot36°—250 +110v5 | 7.663119
E 12 20
V. 20X3 1

Icosahedron 5_3 T cot 6006 2+ IS\E 2.181695
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3.7 Coordinate systems
3.7.1 Cartesian coordinates
Y
Distance in R? Y
From the diagram and using the Pythagorean theorem ? |
d iy, —
d=(x,—x) +@,— ) Piyz .
Y PR
d=\/(x2—xl)2+(y2—}’1)2 S -
* Y oX

Distance in R*
From the diagram and using the Pythagorean theorem

b= (x, — x1)2 + (2, — Z1)2
P=b
d=(x, = x)*+ (2 =)+ (2, — 2)°

d=\J(x, =) +(y, = 3,V +(z,~ 2,

3.7.2 Polar coordinates

Given a point with Cartesian coordinates (x, y), then from
the diagram and using the Pythagorean theorem

r?=x*+ y

r=«/x2+y2
and tan0=Z
x

6 =tan"'2 (Istand 4th quadrants only)
X

The polar coordinates are (r, 6)
Given a point with polar coordinates (r, )

then x =rcosf
y=rsinf

Distance in R?
Given two points (r1,6;) and (r,, 0,) then using their equivalent
Cartesian coordinates

d=\J(x,~ %)+, ~ )
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then d = /(r,cos, — 1, cos (91)2 + (r, sin6, —r, sin (91)2

2

2 2
(r, cos” 0, + 1" cos” 0, — 2rr, cos 0, cos 0,

d= 2
+ 72 sin? 0, +r12 sin? 0, —2rr,sinf, sin6,)

12

r, +1° —2rr,(cosf, cos), +sin6 sind,)

2 2
n"+r, —2nr,cos(6, —0,)

3.7.3 (ylindrical coordinates

Given a point with Cartesian coordinates (x, y, z), then from
the diagram and using the Pythagorean theorem

6 =tan 'Y  (1stand 4th quadrants only)
x

zZ=2

Given a point with cylindrical coordinates (r, 0, z)

then x =rcos6
y =rsin0
z=12z

3.7.4 Spherical coordinates

Given a point with Cartesian coordinates (x, y, z), then from
the diagram and using the Pythagorean theorem

p=«lx2+y2+zz

6 =tan 'Y (1stand 4th quadrants
X only)

-z
\/xz ~I—y2 + 22

N.B. The z-axis is normally taken as the vertical axis.

¢ =cos !

Given a point with spherical coordinates (p, 8, ¢), then from the diagram

sinq,’>=£
p
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b=psin¢
cos = z
p
z=pcosd¢
x
but — = cosf
! b
Substituting (1) x = psin ¢ cos 0
Similarly 2 =sino

b
y = psin ¢ sin 6

The Cartesian coordinates are
X = psin ¢ cos 6
y = psin ¢ sin 6
z=pcos¢

(1)
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3.8 Vectors

3.8.1 Proof: Magnitude of a vector

A vector represents a directed line segment whose magnitude is defined by its length.
The length of a line segment is given by

\/(xz —xl)2 + (, —yl)2 +(z, — 21)2

therefore, given a=x,d+yj+zk

then |la]| = ./xi + yi + zj

3.8.2 Proof: Normalizing a vector to a unit length

A vector is normalized to a unit length by dividing each component by its magnitude.

If a=xi+yj+zk
then llall = \/x2 +y2 + 22
Jy xa O ya . Zu
therefore a= i+ j+ k
llall - {lall™  llall

Check the magnitude of & to prove that its length is 1.

2 2 2
é — \/ xa + yﬂ + Zﬂ
lalF Talf flalP

o 1
a|=—xX+y’+2°

] Vo 0
Il

A

[l

3.8.3 Proof: Scalar (dot) product

The scalar product is defined asa b = |[a| - ||b]|| cosa

where « is the angle between vectors a and b.

Let a=ux,i+yj+zk

and b= xbi + }/bj + Zbk

therefore a*b=(x,i+ yj+ z,k) (i + yj+ zk)
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a'b:xaxbi°i+xaybi'j +xazbi'k+yaxbj.i+yuybj'j +yazbj'k
+zxpk i+ zykej+ zzk < k

but jci=jej=kek=1
and jsj=i-k=jri=j-k=kei=k-j=0
therefore a*b=xx, + yyp + 2.z, = ||a]| - ||b|| cos &

3.8.4 Proof: Commutative law of the scalar product

bea= (xi+ yj + zK) ¢ (xad + yij + zk)
bea=xxici+xyicjtxpzick+yxjeityygcityzigck
+ zpxkei+ zykej+ zz, ke k
then bea=xyx, T ypy. + 22,
therefore bea=a-*b

3.8.5 Proof: Associative law of the scalar product

a*(b+c)=(xi+yj+ 2k e ((xi+ yj+ 2k + (xi+ yj+ zk))
a*(b+c)=(xi+yj+zKk((x +x)1+ (yp + )i + (2, + 2)k)
as(b+c)=x,0x0+x) +y.0p + y0) + za(2p + 2.)
as(b+c)=xxp+ XX+ Yy T Ve + 242y T 242,
as(btc)=xx+yyy+ 2.2y + X%+ Yy + 242,

therefore a*(b+c)=a<b+a-c
Prove a-a=|[a|]?

Given a+a=|a|| - ||a]| cos @
but a=0° cosa =1
therefore a-a=|[a]|?

Prove a*b=0 & a_Lb
If alb & a=90°
then a*b =|[a]| - ||b]| cos 90°
therefore a*b=0

3.8.6 Proof:Angle between two vectors

Let a=ux,i+yj+ zk
and b= xbi + }/bj + Zbk
then a+b=||a|| - ||b]| cos @
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X, %, + Y + z,z,

[lall - [[bl]

o = cos”! xx, tyy +z,:z
[l -Ib]

therefore cosa =

and

3.8.7 Proof:Vector (cross) product

The vector product is defined as follows:

aXb=c where |[|c||=]|a]|-||b]| sin @ and c is orthogonal to a and b.
Let a=x,+yj+zk
and b = x,i + y,j + 7k
then aXb=(xi+yj+ zKk) X (xi+ yj + z,k)

aXb=x00 X1+ xy,0 Xj+ x,250 XK+ %5 X1+ ypj Xj
+ y.z) Xk + zxk Xi+ zyk Xj+ z,z,k X k

but iXi=jxj=kxk=0
and iXj=k ixXk=-j jXi=-k jXk=i kXi=j
kXj=—i
Then aXb=,z,— zyp)i+ (222, — x,25)] + Xy — Yaxp)k
therefore axb=|Y Zalit+|% % j+ Yo Ya |k
o % 2, % Xy Wy
i j k
or aXb=|x, y z
X Y %

3.8.8 Proof: The non-commutative law of the vector product

Let a=xi+yj+zk
and b = x,i + y,j + zk
then b X a = (xi+ yj + z,K) X (x,1i+ y,j + z,k)

b X a =xpx,0 X1+ xpp,iXj+ x52,0 Xk+ ypx,j Xi+ ypyjXij
+ ypzj X k+ zpx k Xi+ zpy k X j+ z,z,k X k

b X a = (yyz, — zpy )i + (zpx, — x2,)] + (Xpya — Ypx)k

b Xa= —(zpy, = ypzi — (xp2, = 2pXa)j — (VpXa — XYk

z

a
2

yﬂ Za
b %

xﬂ yﬂ

X Iy

therefore bXa=— i— i— k=-aXb

X
a
Xy
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3.8.9 Proof: The associative law of the vector product

Let a=uxi+yj+zk b =x,i+ y,j + z,k c=xit+tyj+zk
then aX (b+c)=(xi+ yj+ zK) X ((x1 + ypj + z,k) + (xd + yj + z.k))
aX(b+c)=(xi+yj+zk) X ((xp+x)i+ (y, +y)j+ (2 + 2)k)

X(Mb+e)=|, Ja NIE A Yo lj+|, % Ya Ik
ax(b+c) ‘(yb+yc) (z, +z,) ! (z, +2z) (x,+x) ) (x, +x) (y, +».)
ax(+c)=|2a Zali+|Va Zalit|% Falj+|%a Falj|Fa dalk+|Fa VoK
Io % ¢ % %y % Z. X X Db ¢ Ye
therefore aX(bb+c)=aXb+aXc
3.8.10 Proof: Scalar triple product
xa a zu
[ b, c]=a<(bXc)=|x, », 2z J s a
x Yy z
c c c CL, 777777777777777777777777
o -
Letd = b X c where d is orthogonal to b and c. A baie
b

Volume of parallelpiped V = Area of base X orthogonal height
= Area of base X |a| cos «
therefore V=||d|| - |la]|cosae =a- (b X ¢)
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3.9 Quaternions

3.9.1 Definition of a quaternion

This is an explanation rather than a proof of the background to quaternions.

Quaternions are a natural extension of complex numbers where a real number is paired with
an imaginary component to make (a + ib). A quaternion has three imaginary components:

(s + ia + jb + kc). In fact, any number of imaginary components can be considered, however,
the problem is interpreting the result.

William Rowan Hamilton discovered quaternions on 16 October 1843, and his friend, John
Graves, discovered octonions in 1845. Arthur Cayley had also been investigating octonions,
which is why they are also known as Cayley numbers. An octonion has the form
(s+ai+ bj+ ck+ dl+ em+ fn+ go) [Fenn, 2001].

Let us investigate the multiplication of two quaternions and see how they give rise to
vectors, the scalar and vector products.

Given q = (spxi + yij + z,k)
and qa = (83, %1 + ) + 2,k)
then Q192 = (s, x0d + yij + 2,K) (s, 251 + y2j + 2,k)

Q2 = (5155 $1361 + 5175 + 512K + 5,11 + 3,17 + X1y
+ x12,0k + 5,01 + yixoji + yni* + nizojk + szik
+ x,z:ki + z1y,kj + z,2,k?)

QiQ2 = (5155(51%; + $,%9)i + (s1y, + s,y1)j + (512, + 5,21 )k
+ x10602 + Y1yt + 212K + xij + yizojk + xziki
+ y1xji + z1y,kj + x,2,ik)

Interpreting this result was the stumbling block for Hamilton as it was necessary to interpret
the meaning of i%, j?, k2, ij, jk, ki, ji, kj and ik. In a stroke of genius he thought of the following
rules:

j
ji=—-k ki=-i ik=—j
i j k
or summarized as ; :11( _lf _i]
k| j -4

If we apply these rules to the last equation we get

QQ2 = (515 = X1% = Y12 — 212 (51% + s:x)i + (51, + s01)j
+ (512, + 52k + xyyk + yi1251 + %5215 — yixok

=zl — X,25))
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simplifying to Qs = (515, — (1%, + y1ys + 2125), 51(%51 + y,5j + 2,k)
+ 5,001 + y1j + z1k) + (112, — Z0)i
+ (x2) — x125)j + (x> —ylxz)k)

This equation now only contains real and imaginary components derived from the original
quaternions.

We can see that 515, — (x1%; + y1y, + 2,2,) s areal quantity
s1(x,1 + y5j + z,k)  is the product of s; and the imaginary part of q,
and sy(xi1 + y1j + z,k)  is the product of s, and the imaginary part of q;
The last part (123 — Zii + (%221 — x12,)j + (%1, — y1x)k  can be rewritten as
N Ali+Aa M i+ X Nk
y2 ZZ 22 x2 x2 y2

which we recognize as the vector product of (x;i + y,j + z;k) X (x,1 + y,j + z,k)
Similarly x;x, + y,y, + 2,2, is the scalar product of (x;i + y;j + z/K) * (3,1 + y,j + 2,k)
So if we describe the original quaternions as a scalar and vector:

q = (spv) and q; = (s, V)
we obtain Q1qz = (518 — Vi * vy, 51V, + 5,v; + vy X vy)

One very important difference between quaternions and complex numbers is that the
multiplication of quaternions is non-commutative: q;q, # q,q;

Rooney [1977] explores the development of quaternions as a tool for performing rotations
and considers the product of a quaternion with a vector:

given 9= (45 q.d + g)j + ¢.) = (959))
and the vector v = xi + yj + zk which can be represented as a quaternion using
r = (0,v)
then ar = (4,,,)(0,v)
equals qr =(—q,*v,q,v + q, X V) (1)

We can see from (1) that the vector component of gr,i.e. g;v + q, X v is the sum of the scaled
vector g,vand q, X v.
If q, and v are orthogonal then we obtain the situation shown in the diagram:

q,v +q, Xv

qXv 7]
q 1

and qr = g,v + q, X v i.e.a vector
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Vector v has been rotated in the plane orthogonal to q, but it has been stretched. This is how
quaternions can be used to rotate a vector, but somehow we need to avoid the stretching.

If we make q = (cos6,sin0(li + mj + nk))

where P+m*+n?=1

then q = (cos6,nsinb)

where n=(li+mj+nk) and |n||=1

then qr = (cos6,n sinH)(0,v)

and qr = sinf(n X v) + cosfv 2)

The result of sinf(n X v) is a vector with magnitude sin 6||v|| in a plane containing v and
orthogonal to n. When this is added to cos 8 v we obtain the rotated vector v':

then [IV'|I> = sin?8|[vI[> + cos?6 ||v]P
[[v'||> = ||v]|* (sin®*6 + cos?6)
[Iv'[l = [Ivll

Thus v is rotated to v'. But the problem with this strategy is that in order to rotate a vector we
must arrange that the quaternion is orthogonal to the vector, which is not convenient. Brand
[Brand, 1947] proposed an alternative approach using half-angles, where

_ 0 .0
q = (cos =, n sin —)
2 2

and n = (i + mj + nk) and is a unit vector
and v =qvq!
where q ! is the inverse of q given by ¢! = g, — q, (for a unit quaternion).

If we now rotate v using this technique we obtain:

v’ = (cos 9 ,sin 4 n)(0,v)(cos 0 , —sin 9 n)
2 2 2 2

Let c= cosg and s= sing
2 2

then v’ = (¢, sn)(0,v)(c, —sn)

Multiplying the first two quaternions

!

v = (=s(n-*v),cv + s(n X v))(c, —sn)

Multiply these quaternions

!

v = —cs(n+v) + (cv + s(n X v)) * (sn) + s(n*v)n
+ v+ cs(n X v) + (cv + s(n X v)) X (—sn)
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vi=—cs(n+v) +cs(n+v) +s*(n Xv)en+ s*(n-v)n

+ v+ ces(n Xv) —cs(vXn)—s*(nXv)Xn
but(n X v)ev=0 vV =s2(n+v)n+ v+ 2cs(n X v) — s?(n X v) X n
but(n Xv) Xn=v(n+*n) —n(ven) =v—n(ven)
therefore v =s2(n+v)n + c¢*v + 2cs(n X v) — s?v + s3(v+ n)n
but 2¢s = 2 cosg sing = sin6
2 2

v =28 v)n + v(c? — 5% + sinf(n X v)

but ¢ — 2 —sin? = cosf
2

v =2s?(n*v)n + cosfv + sinf(n X v)

therefore v =sinf(n X v) + cosfv + 2 sinzﬁ (n+v)n (3)
2

This is very similar to (2) and confirms that the vector is still being rotated. The diagram
clarifies what is happening.

Let us test (3) by rotating the point (0, 1, 1) 90° about the y-axis.

Therefore

then

(e}

0 ,sin%j) and r=(0,j+ k)

q = (cos

v/ =sin 90°(j X (j + k)) + cos 90°(j + k) + 2 sin? 45%+(j + k)j

vi=(GX(j+k)+j-G+Kk)j

vVi=i+tj

which points to (1, 1,0), which is correct.

Naturally, we would obtain the same result if we had evaluated this using pure quaternions.
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3.10 Transformations

3.10.1 Proof: Scaling in R2
Scaling relative to the origin

A point (x, y) is scaled relative to the origin by factors
Sy and S, to a new position (x',y") by

x' Sx 0 O x
or as a homogeneous matrix yl{=|0 Sy 0l-{y
1 0o 0 1] |!
Scaling relative to a point
Y
, D)
[
)
DA ?
(xp, yp)
yey ©
‘ Xp X x' X

A point (x, y) is scaled relative to a point P(xp, yp) by factors S, and S, to a new position (x',y")
in the following steps:

1. Translate (x, y) by (—xp, —yp).
2. Scale the translated point by S, and §,.
3. Translate the scaled point (xp, yp).

Therefore x'=8(x — xp) + xp=Sx + xp(1 — S,)

Y =80y typ=8y+ty(l—=S8)

x' S. 0 x,0—-S) x
or as a homogeneous matrix , Y F s

y1=10 S, »A=S)|-|y

1 0 1 1

o
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3.10.2 Proof: Translation in [R2

A point (x, y) is translated by distances T, and T, to a
new position (x', y') by

x'=x+T,
y=y+T,
x' 1 0 T, X
or as a homogeneous matrix |y |=|0 1 Ty y
1 00 1] [!
3.10.3 Proof: Rotation in R
Y
\ oY)
'/
S ey
Yo
B .
b'¢

A point (x, y) is rotated about the origin by angle a to a new position (x', y") by

x' =rcos(@ + a) = r(cos 0 cos @ — sin 6 sin a)
y' =rsin(@ + a) = r(sin 0 cos « + cos 6 sin &)

, x y . .
x'=r| —cosa—<sina | = xcosa — ysina
r r

X . .
y' = r(zcosa + —sma] = ycosa + xsina
r T

x' cosae —sina 0 x
or as a homogeneous matrix | y' |=|sina cosa O|-|y

1 0 0 1 1
Rotation about a point

YA

oGy
/ « 0% y)
(xp. yp)
X
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A point (x, y) is rotated about a point (xp, yp) by angle a to a new position (x', y') in the
following steps:

1. Translate (x, y) by (—xp, —yp).
2. Rotate the translated point about the origin by angle a.
3. Translate the rotated point by (xp, yp).

Therefore X=X — Xp
=y = p
X, = X; cOs o — yp sin &
Y, = xpsina + y; cos a
x' = (x — xp)cosa — (y — yp)sina + xp
y' = (x—xp)sina + (y — yp)cosa + yp
x'=xcosa— ysina + xp(l — cosa) + ypsina
y' =xsina + ycosa + yp(l — cosa) — xpsina
x’} cosa —sina  x,(l—cosa)+ y,sina l:x:l
Y
1

! j— : . .
or as a homogeneous matrix [)’ = SH(;“ coga Ip (1 —cosa) - X, sina
1

3.10.4 Proof:Shearing in R2

Shear along the x-axis
A point (x, y) is sheared by angle « along the x-axis to a new Y
position (x',y") by oy @)
y tana
x' —x=ytana
x'=x+ ytana @
Y=y ' >
X
x' 1 tana 0 X
or as a homogeneous matrix yi1=(0 1 0|y
1 0 0 1 1
Shear along the y-axis
Y
A point (x, y) is sheared by angle « along the y-axis to a new / o (x',y")
position (x, ') by xtan o
y —y=xtana @ é(x’y)
Yy =y+xtana
x'=x X
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OB
Q
SO = O

x/
or as a homogeneous matrix [ y’] = l:ta
1

3.10.5 Proof: Reflection in k2
Reflection about the x-axis

A point (x, y) is reflected about the x-axis to (x’,y’) by

[J—

x/
or as a homogeneous matrix [ y’:l = [
1

Reflection about the y-axis

A point (x, y) is reflected about the y-axis to (x', y") by YA
x'=-x
y =y 'y (x.y)

SO -
o= o
— o o

X —
orasa homogeneous matrix [)/ :l [
1

Reflection about a line parallel with the x-axis

A point is reflected about a line in the following steps: YA )
oy
1. Translate the point (0, —yp). v |
2. Perform the reflection. o |
3. Translate the reflected point (0, yp). o', y")
X

Therefore x'

Y= _()’ )ty =2~y

| } s (]

R,



264 Geometry for computer graphics

Reflection about a line parallel with the y-axis

A point is reflected about a line in the following steps:

1. Translate the point (—xp,0).
2. Perform the reflection.
3. Translate the reflected point (xp, 0).

Therefore x'=—(x—xp) +xp=2xp— x
y =y
] [-1 0 2x,] [«
yl=] o1 o y
1 0 0 1 1

3.10.6 Proof:Change of axes in [R?
Translated axes

Translating the axes by (xr, y7) is equivalent to translating the
point by (—x1, —y1):

x'=x— xr

Y =y=yr
x' 1 0 Xr x
or as a homogeneous matrix YI|=10 1 —y, y
1 0 0 1 1

Rotated axes by angle « about the origin

Rotating the axes by « is equivalent to rotating the point by —a.

Therefore x'=xcosa+ ysina

y' =ycosa — xsina

x' cosa  sina 0 x
or as a homogeneous matrix y' |=|-sina cosa Of-|y
1 0 0 1 1
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3.10.7 Proof: Identity matrix in R?

The identity matrix does not alter the coordinates being transformed.

Therefore

oo
—o o
= R

x'

b
x 1
or as a homogeneous matrix Yy |[=|0
1 0

3.10.8 Proof:Scaling in R?
Scaling relative to the origin

A point (x, y, z) is scaled relative to the origin by factors S,, S, and S,
to a new position (x’,y',z") by x' = Sx

Y =5y
Z' =8,z
X' S, 0 0 0] [x
. y|_|0 s, 0 0] |y
orasa homogeneous matrix Z’ 0 0 Sz 0 z
1 0 0 0 1 1
Scaling relative to a point
Y
b
So (Y, 2)
(5, y, )0 (xp, Yp, 2p)
[e]

A point (x, y, z) is scaled relative to another point (xp, yp, zp) by factors S,, S, and S, to a new
position (x, y',2') in the following steps:

1. Translate (x, y,z) by (—xp, —¥p, —zp).

2. Scale the translated point by S,, S, and ..

3. Translate the scaled point (xp, ¥p, zp).

Therefore x' =8, (x —xp) +xp=S8x + xp(1 —S,)

Y =80y typ=Syty(l—=S8)
2 =8,z—2zp) +zp=S8z+ zp(1 — S,)
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0 0 x,(1—S)
S, 0 y,0-5)

i y
or as a homogeneous matrix 0 S, z,0-5)
0 0 1

D—IN\\Q\X
Il

o o o™

— N R

3.10.9 Proof: Translation in R

A point (x, y, z) is translated by distances T, T), and T, to a new position (x', y’,z") by

x'=x+T,
y=y+T,
Z=z+T,
X' 1 00 ? X
x | 2= O Ly
or as a homogeneous matrix > 001 T g
1 00 0 I 1
3.10.10 Proof: Rotation in 3
Rotation about the z-axis
Y
Ly

(x,y,2)
=0

A point (x, y, z) is rotated about the z-axis by the roll angle a to a new position (x',y’,z") by
x' = rcos(6 + a) = r(cos 6 cos a — sin 0 sin «)

rsin(@ + ) = r(sin 6 cos a + cos 0 sin «)

!
y
Z' =z

, x y . .
X =7r| —CcoSsa — —SsIna :XCOSO(_)/SII'IO{

r r
f=r(

X . .
cosa-i——sma] = ycosa + xsma
r

~ N
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x cosae —sina 0 O x

. y'|_|sine cosa 0 Of |y

or as a homogeneous matrix 7 0 0 1 0 Z
1 0 0 01 1

Rotation about the x-axis

A point (x, y, z) is rotated about the x-axis by the pitch angle « to a new position (x', y’, z’) by
x'=x
y' =rcos(@ + a) = r(cosf cosa — sinf sina)

z' =rsin(@ + a) = r(sinf cosa + cosf sina)

z . .
Yy = T(—y cos o ——sma) = ycosa — zsmo
r r

z . .
Z' = r(—cosa-i—lsma] = zcosa + ysina
r r

’

0 0
cosa —sina
sina  cosa

0 0

!

or as a homogeneous matrix

— N R
I
oo o
—_OoO oo
— N R

Rotation about the y-axis

i N
xy2 @&,y,7)

A point (x, y, z) is rotated about the y-axis by the yaw angle « to a new position (x',y’, z") by
x" = rsin(@ + «) = r(sin 6 cos a + cos 0 sin «)
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[
y =)
z' = rcos(f + a) = r(cos 0 cos a — sin 0 sin «)
. x z .
x' =r| =cosa+ —=sina | = xcosa + zsina
T r

z X . .
Z' = T(—COSOZ_—SIH(X) = ZCoSa — Xxsmuo
r r

x' cosae 0 sina 0 x

|yl o 1 0o of.|y

or as a homogeneous matrix % —sna 0 cosa 0 g
1 0 0 0 1 1

3.10.11 Proof: Reflection in R
Reflection about the yz-plane

A point (x, y, z) is reflected about the yz-plane to (x’,y’,z’) by

!’

X = —X
’
’

x' -1 0 0 O x
Y|l 01 0 0], |y
z' 0010 z
1 0 0 0 1 1

Y
z
or as a homogeneous matrix [

Reflection about the zx-plane

A point (x, y, z) is reflected about the zx-plane to (x', y’,z") by

!

x' =x
Y=y
zZ' =z
x' 1 0 0O x
_ |yl_lo -1 0 0. |y
or as a homogeneous matrix 7 0 01 0 g
1 0 0 0 1 1
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Reflection about the xy-plane

A point (x, y, z) is reflected about the xy-plane to (x', y’,z’) by

x'=x
Y=y
z =-z
x' 1 0 00 x
: yil_lo1 oo |y
or as a homogeneous matrix 7 00 -1 0 g
1 0 0 01 1

Reflection about a plane parallel with the yz-plane

A point is reflected about a plane in the following steps:

1. Translate the point (—xjp,0,0).
2. Perform the reflection.
3. Translate the reflected point (xp, 0, 0).

Therefore x'=—(x—xp) +xp=2xp— x
y =y
Z' =z
x' -1 0 0 2x, x
. y1i_| 01 0 o0 y
or as a homogeneous matrix 7 001 0 g
1 0 00 1 1

Reflection about a plane parallel with the zx-plane

A point is reflected about a plane in the following steps:

1. Translate the point (0, —yp, 0).
2. Perform the reflection.
3. Translate the reflected point (0, yp, 0).

!

Therefore x'=x
===y Typ=2p—y

!

Y
z' =z
x' 1 00 O X
: yi_lo -1 0 2y, | |y
or as a homogeneous matrix 7 o 01 o g
1 0 00 1 1
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Reflection about a plane parallel with the xy-plane

A point is reflected about a plane in the following steps:

1. Translate the point (0,0, —zp).
2. Perform the reflection.
3. Translate the reflected point (0, 0, zp).

Therefore x' =x
Y=y
2 =—(z—zp) tzp=2zp— 2
x' 1 0 0 0 X
o |ylZlor o o |y
or as a homogeneous matrix > 00 -1 2z g
1 00 0 1 1

3.10.12 Proof: Change of axes in R?
Translated axes

Translating the axes by (xr, y1, z7) is equivalent to translating
the point by (—x1, —yp, —z7).

Therefore x'=x—xr
Y=y
Z=z—zr
x' 1 00 —xT X
. ! 01 0 —
or as a homogeneous matrix )z/’ “lo o0 1 —)z/ ;" z |
1 000 1 1

Rotated axes about the origin

Direction cosines are used for calculating coordinates in rotated frames of reference:
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x' oy hy O x
/
Jl=|"1 T2 s 0 y
z Ty Ty Ty O z
1 0 0 0 1 1
where 111> 112 and ry; are the direction cosines of the secondary x-axis

1215 T2y and ry5 are the direction cosines of the secondary y-axis

131, I3, and r3; are the direction cosines of the secondary z-axis.

3.10.13 Proof: Identity matrix in R

The identity matrix does not alter the coordinates being transformed.

Therefore

or as a homogeneous matrix

— N
— N R

Il
oo~
O~ OO

co~o
—o oo
— N\ R
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3.11 Two-dimensional straight lines

Equation to a line

Various line characteristics can be used to develop the equation of a straight line, such as
specific Cartesian coordinates, the line’s slope, its intercepts with the Cartesian axes, the
perpendicular distance to the origin, polar coordinates, or even vectors. We will develop
equations for six forms: the normal, general, determinant, parametric, Cartesian and
Hessian normal form.

3.11.1 Proof: Cartesian form of the line equation
Strategy: Let n be a nonzero vector normal to a line,and P(x,y) YA

be a point on the line, which also contains a point Py(xg, ¥,). Use Py n
vector analysis to derive the general form of the line equation.

Let the vector normal to the line be n = ai + bj Po 4
Let p and p, be the position vectors for P and P, respectively 7 P
where Po = Xol + yoj p
and p=xi+yj 54
Therefore the line’s direction vector is
9=P ~ Po
As n is orthogonal to q n'q=0
therefore n*(p—py) =0
and n*p =n-+py (1)
therefore ax + by = ax, + by,
The line equation is ax +by=c
where ¢ =axy + by,
However, the value of ¢ also has this interpretation:
from the diagram d = ||po|| cos @
but n+po = ||n|| - ||po|| cosa = d [n]|
Therefore the line equationis ax + by = ¢ (2)
where c=d|n]| or ax,+ by,

Dividing (2) by ||n|| we obtain the normalized Cartesian line equation.
The normalized Cartesian line equation is

a b
—x+—y=d
lInll~ {In]]

Note that this equation depends upon the line being oriented with its normal vector pointing
to the left of its direction.
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3.11.2 Proof: Hessian normal form (after Otto Hesse (1811-1874))

The Hessian normal form of the equation of a line
develops the Cartesian form and is used to partition
the xy-plane in two. The division is determined by an
oriented line [, such that when looking along the line’s
direction, points to the left are classified as positive,
points to the right negative, and points on the line zero.

Strategy: Develop a general equation for the

perpendicular distance of an arbitrary point P(x, y)
from a line [, taking into account the signs of angles
associated with the geometry. o

Qs a point on line / such that (TQ = p and is perpendicular to L
«a is the angle between the x-axis and 06 .
R is a point on line / such that RP=d andis perpendicular to L

T is a point on the x-axis such that TP is perpendicular to the x-axis.

The diagram shows the resulting angles.

The vector path from the origin O to P has two routes:
0Q+ QR+ RP = OT + TP
But rather than compute these individual vectors, compute their projections on the normal n:

therefore pt0+d=xcosa+ ysina

and d=xcosa + ysina—p
d>0 totheleftofl
d=0 onthelinel
d <0 to theright of /

where the sign of d provides space partitioning.

The Hessian normal form is expressed as
xcosa + ysina =p

The axis intercepts are

3.11.3 Proof: Equation of a line from two points

Strategy: Given two points P,(xy, y;) and P,(x,, y,) create an extra point P(x, y) and equate the
slopes between pairs of points.



274 Geometry for computer graphics

Normal form of the line equation YA Py
Vo[
From the diagram YN VT Y pl 77777777777
X xl X2 o xl Vi[> :
(),
therefore Yoh T [ x, — ](x %) ! >
X X1 X Xy X
Y, ™ N . Y, =N
and y= (x “x, ] x+ 0 xl(—xz—le
The normal form is y=mx+c
yz yl _ _ yz — )/1
where m= (xz_le €= xl(xz_xl)

General form of the line equation

y_ylzy_yl

x—xl x—xl

From the diagram

(= x) v —y1) = (02 = y1) (x — x9)
2 = y)x — (2 —yox = (63 — x1)y — (%2 — X))

2 = y)x + (%1 — x%3)y = x1)2 — X0 (1)
The general formis Ax + By + C=10
where A=y, —» B=x; — x, C=—(xy, — x91)

Determinant form of the line equation

Determinants can be used to describe (1)

ly1

x+ [
1A b

Parametric form of the line equation

P, and P, are the two points and p, and p, their respective
position vectors.

Let V=P, P
therefore p = p: + Av where A is a scalar.

P is between P; and P, for A € [0, 1].

If [|v]| = 1, A corresponds to the linear distance along v.
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3.11.4 Proof: Point of intersection of two straight lines
General form of the line equation

Strategy: Solve the pair of simultaneous linear equations describing the straight lines.
Let the two lines be ax+by+ec=0

ax +by+c¢=0
Let P(xp, yp) be the point of intersection of the two lines.

axpt+ byp=—c
Therefore e O _ !
axp + byyp = —¢,
therefore X  _ Yp  _ 1
¢ b a ¢ a b
CZ bZ aZ 2 a bZ
_ &b —cb, _ %4 95
Coordinates of P Xp = Jp =
ab, —ab, ab, —ab,
The lines are parallel if the denominator a;b, — a,b; =0
Parametric form of the line equation
Strategy: Equate the two parametric line equations and
determine the values of A and e. R
Let the line equations be p=r+a
and p=s+teb

Let P(xp, yp) be the point of intersection for the two lines and
p its position vector.

Therefore r+la=s+sb
and Xg T Ax, = x5 + ex; (1)

JRY Mo =yst ey (2)

X, —x, +tex
From (1) A= S+”
N Xg—Xptex, | N
Substitute A in (2) IRTVa| = [T Vs T
Expanding XYy + XVa — XpVa T €XpY0 = XaVs T XY
Rearranging e(XpYa — XVp) = XoYs — XVr — XsVa + XpVa
We obtain £= X5 = Yr) = ¥a (% — %)
xbya - xayh

Similarly A= % Us =) = 2 (g — %)

xbya o xayb
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or in determinant form

x, (xg—xp)

a x, (X = xg)

_a (Vg = yz) _ | (s = )
X, Yy X5 My
xa ya xa ya
Coordinates of P Xp=Xp T AX,  Yp=YrT Ay,

The lines are parallel if a*b =0

3.11.5 Proof: Angle between two straight lines
General form of the line equation
Strategy: Derive the normal vectors to the lines and compute the scalar product to reveal the

cosine of the enclosed angle. Derive the sine and tangent of the angle from the cosine
function.

Let the two lines be ax+by+ec=0
and ax +by+c,=0
The normal vectors are n=gji+bj and m=a)+ byj
therefore nem = ||n|| - ||m|| cos
4 mnem
Angle between the lines @ = cos (MJ
If ||n|| = ||m]| = 1 a = cos” !(n+m)

Normal form of the line equation

Strategy: Use the tan (A — B) function to reveal the enclosed angle a.
Let the two lines be y=mx+ ¢
y=mx + ¢
where m; =tana; and m, =tana,
tana, —tana,

tana = tan (o, —@,) =
1+ tanq tana,

m - m,

tanoe = ———=

1+ mm,
; e GG
Angle between the lines a=tan | —=
1+ mm,

Note that if the lines are interchanged tana’ = tan(a, — @) = —«
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If mym, = —1 the lines are perpendicular.
To compute cos o
tano; = my

but 1 + tan’a = sec’a
1 . m
therefore cosqy = ————= and sing, = —L
J1+m? J1+m
.. 1 . m
Similarly cosa, = ————= and sina, = ——
2 2
1/1 + m, NIES m,
therefore cosa = cos (@, — @) = cosa, cosa; + sina,sina;
1 1 m, m,
cosa = +
2 2 2 2
\/H—mz \/1+m1 \/H—mz \/1+m1
1+mm
cosqg = ——— L2
2 2
1/1 + m ,/1 + m,
1+ m,m,

Angle between the lines a=cos || —~12—
JL+m 1+ m?

Note that this solution is not sensitive to the order of the lines.

Parametric form of the line equation

Strategy: Use the scalar product of the two line vectors to reveal the enclosed angle.

Let the two lines be p=r+Aia
q=s+eb

The angle between the two lines is the angle between the vectors a and b, which is given by
a*b = |[al| - [[b]| cos @

[ a-b
Angle between the lines @ 1(||a|| |[bl] J

If |[a]| = ||bl]| = 1 a = cos '(a*b)

3.11.6 Proof: Three points lie on a straight line

Strategy: If two vectors are created from the three points the vectors must be linearly related
for the points to lie on a straight line.

Given three points P, P,, P3
Let r=PP, and s=PP,

therefore s = Ar for the points to lie on a straight line.
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3.11.7 Proof: Parallel and perpendicular straight lines

General form of the line equation

Let the lines be ax+by+c¢=0

and ax + by +c,=0

Parallel lines

The normal vectors are n = a;i + b;j and m = a;i + b;j respectively.
n and m are parallel if n = Am where A is a scalar.

Perpendicular lines

The lines are mutually perpendicular whenn+m = 0

Normal form of the line equation

Let the lines be y=mx+ ¢
and y=mx t
Parallel lines

m; and m, are the respective slopes of the two lines therefore the two lines are parallel when
my; = my

Perpendicular lines
m; = tan«
m, = tan(90° + «)
but m, = tan(90° + ) = —cot«
therefore mym, = tana(—cota) = —1
mym, = —1

Parametric form of the line equation

Let the lines be p=r+\a
and q=s+¢eb
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Parallel lines

p and q are parallel if a = kb where k is a scalar.

Perpendicular lines

a*b=0

3.11.8 Proof: Shortest distance to a line

Strategy: Postulate that the shortest distance is a normal
to a line and prove that other lines are longer.

Let P be an arbitrary point not on line a.
Let Q be a point on a such that PQ is orthogonal to a.

For any other point R on PR = ﬂ therefore PR > PQ
sina

for @ # 90°.
PR = PQ when a = 90°, therefore, PQ is the shortest distance
from P to the line a.

Obviously, the same reasoning applies for a 3D line and a plane.

3.11.9 Proof: Position and distance of a point on a line perpendicular to the origin
General form of the line equation

Strategy: Express the general form of the line equation as the Y
scalar product of two vectors and use vector analysis to identify h
the point Q on the perpendicular to the origin. 0

Let the equation of the linebe ax + by + ¢ =0
Q is the nearest point on the line to O and q is its position vector.

Let n = ai + bj -
. 2 X
and q=xi+yj
therefore neq=—c¢
Let q=An
therefore n*q=An*n= —¢
—c
and A=
nen
If|n|]| =1 A=—c
position vector q=An

distance 0Q = ||q||
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Parametric form of the line equation

Strategy: Express the parametric form of line equation as the scalar product of two vectors
and use vector analysis to identify the point on the perpendicular to the origin.

YA

o .¢

Let q=t+ v (1)
Q is nearest to O when q is perpendicular to v
therefore veq=0
Take the scalar product of (1) with v
veq=vet+ Avev

—Vvet
therefore A=

Vev
If|lv]| =1 A= —vet
position vector q=t+Av
distance 0Q = ||q]|

3.11.10 Proof: Position and distance of the nearest point on a line to a point

General form of the line equation YA n
Strategy: Express the general form of the line equation as the P84
scalar product of two vectors and use vector analysis to identify

the point Q on the perpendicular from P to the line. r

Let the equation of the linebeax + by + ¢ =0 > P

and Q(x, y) be the nearest point on the line to P. 5 >
Let n = ai + bj

and q=xi+yj

therefore n*q=—c¢ (1)
r is parallel to n, therefore r=An 2)
and ner = An-n 3)
but r=q-p

therefore n‘r=n+q—n°*p (4)

Substitute (1) and (3) in (4) An*n = —c—n-p (5)
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therefore A= “n-pto

nen
If[n]| =1 A=—(n*p+o)
but q=p+r (6)
Substitute (2) in (6) q=p+ An
distance PQ = ||r|| = ||An]|

Parametric form of the line equation

AV

Strategy: Express the parametric form of the line equation as the scalar product of two vectors
and use vector analysis to identify the point Q on the perpendicular from P to the line.

Let the equation of the line be

Let Q be the nearest point on the line to P

but

therefore

r is orthogonal to v, therefore
and

From (7)

therefore

If|v]| =1
position vector

distance

q=t+ Av (7)
p=q+tr
vep=veq+ver
ver=20
vVep =V*q
veq=vVet+ Avev
A=Y ®-Y
Vev
A=ve(p—1t)
q=t+Av

PQ=|lrl[ = llp — gl = llp — (t + Av)]|

3.11.11 Proof: Position of a point reflected in a line

General form of the line equation

Strategy: Exploit the fact that a line connecting a point and its reflection is parallel to the

line’s normal.
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Let the equation of the linebeax + by + ¢ =0

T(x, y) is the nearest point on the line to O and t = xi + yj is its position vector.

let

therefore

n = ai + bj

net= —c

(1)

Pis an arbitrary point and Q is its reflection; p and q are their respective position vectors.

r + r’ is orthogonal to n

therefore

p — qis parallel with n

ne(r+r')=0

ner+n-r =0

therefore P—q=r—r =An
r—r
and A=
n
but r=p-—t

Substitute (1) in (4)

n‘r=n*p—n<t=n<p-+c

ner—ner _2ner

Substitute (2) and (5) in (3) A=
nen nen
A= 2(nep+c)
ns.n
If [n]| = 1 A=2n°'p +¢)
position vector q=p— An

Parametric form of the line equation

Strategy: Exploit the fact that the line’s direction vector is
orthogonal to the line connecting a point and its reflection.

Pis an arbitrary point and Q is its reflection; p and q are their
respective position vectors.

Let the equation of the linebe s =1t + Av

therefore p=t+r

and q=t+r

(2

3)

(4)
)
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therefore

r — r’ is orthogonal to v

therefore

r + r' is parallel to v
therefore

and

where

Substitute (7) in (9)
but
therefore

If|v]| =1
Substitute (8) in (6)

position vector

ptq=2t+r+r

ve(r—1r')=0
ver =ver'
r+r =ev

ve(r+1') =gvev

Ver+ver
e=— 1"
Vev
2Ver
8:
Vev
r=p-—t
2ve(p—t
e = P-1
Vev
e=2ve(p—t)

Pptq=2t+ev
q=2t+ev—p

3.11.12 Proof: Normal to a line through a point

Strategy: Given a line m and a point P the object is to identify a line » that passes through
P and is normal to m. This is achieved by finding the perpendicular form of the line

equation.

General form of the line equation

Given the line m

Let the line n be perpendicular to m passing through the point P(xp, yp).

Let the line be

n is perpendicular to m when

The line equation for 7 is

ax +by+c=0

ax+by+c,=0

a,= — b,=a

¢, = —(ayp — bxp)

—bx+ay+bxp—ayp=10

(6)

(7)

(8)

(9)
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Parametric form of the line equation

Given the line m

there exists a point Q such that v is normal to u.

Also

From (1) and (2)
therefore

but

therefore

If|lv]| =1
From (3)
therefore, line n is

YA p
P u
m
T Ay,
B qQ
t
n
X
q=t+Av (1)
q=p—u (2)
ttAv=p—u 3)
vet+ Avev=vep—v-u
veu=20
PR ARl
Vev
A=ve(p—1t)
u=p-—(t+ Av)

n = p + eu where ¢ is a scalar.

3.11.13 Proof: Line equidistant from two points

Given two distinct points we require to identify a line passing between them such that any
point on the line is equidistant to the points.

Strategy: The key to this solution is that the normal of the line is parallel to the line joining

the two points.

General form of the line equation

Let the equation of the line equidistant to P;(x,, y;) and P,(x,, y,) beax + by + ¢ =0
P(x, y) is a point on this line which contains Q equidistant to P, and P,.
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Let n=ai+bj=p,—p (1)
and q:P1+%n:%(Pz_P1) (2)
then n‘(p—q =0

therefore n*p=n-<q

But the line equation is n'p+c=0

therefore c=-—n*p=—n-*q (3)

Substituting (1) and (2) in (3) ¢ =—(p, —p))*(p, * 3, —P) =—2(p, —p,) *(p, + P,
The line equation is P, p)P—5p,+p))=0

or (o, =x)x+(y, = y)y =+ —x+y; =y =0

Parametric form of the line equation

Let P(xp, yp) be a point equidistant between two points v/ 0P,
Pi(xy, y1) and Py(x,, ,). L
e r v Q@
Let u be the vector PP, ‘
AU
Pis also on the line q = p + Av, which is perpendicular to u. p A
5 P
p and q are the position vectors for P and Q respectively. q °M
Therefore p=1(x +x)i+1(y +y,)j X
also u=(x; —x)i+ (¥, — y1)j
As v is perpendicular to u v=—( —yit (x; — x)j
therefore Q=10 +x)i+1(y+y)it A0, —yit(x, —x)j)

q =G0 +x)—Ay, = yDit+ (GO, +y,)+Ax, —x))j

where A is a scalar.

3.11.14 Proof: Equation of a two-dimensional line segment
Parametric form of the line equation

Strategy: The parametric form of the straight-line equation is
the most practical basis for manipulating straight-line
segments. The value of the parameter can then be used to
determine the position of a point along the segment.

P, (x1, 1) and Py(x,, y,) define the line segment and p, and p,

are their respective position vectors and P(xp, yp) is a point on
the line segment.
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Let a=p, P
Position vector of P pP=p; T Aa
Coordinates of P xp=x; + Ax, — x1)

Pis between P, and P, for A € [0, 1].

yp=y1+ Ay, — )

3.11.15 Proof: Point of intersection of two two-dimensional line segments

Strategy: The parametric proof for calculating the intersection

Y

P P
of two straight lines can be used to determine the spatial p 5 :
relationship between two line segments. The values of the P, » b »
parameters controlling the direction vectors determine - 7 ¢
whether the line segments touch or intersect.

Let the two line segments be defined by P, (x;, y1) — Py(x, ¥2)
and P5(x3, y3) — P4(xy, y4) where P(xp, yp) is the point of X
intersection.
Let a=x,i+y,j
where X,=%—x; and y,=y,—y
and b= xbi + ybj
where Xp=%x4— %3 and Yy, =y, —y;
The line equations are p=r+ia
and q=s+e¢eb
For intersection r+Aa=s+eb
where x1 + Ax, = x5 + ex, (1)
and Nt M=yt ey )
x, —x t+ex

From (1) A= 31 T

xa

X, —x tex, |
Substitute A in (2) Nt x =) tey,

a
therefore XY T X3Ya — XVa t EXRY, = XYs T EXYp
and e(Xpya — XYp) = XY3 — Xgy1 — X3Va + XY,
_ %0 T Ty 7 x)
%Yo T *adp
%0 =)= —x)

Similarly A= . b=

xbyu o xuyb
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x, (x;—x)

Y. O )
In determinant form €=
Xy
xa yﬂ
x, (x;—x)
and A= e 570 b5 =)
X Iy
xa ya

If 0 < A <1 and 0 < & <1 the lines intersect or touch one another.
Coordinates of P xp=x1+tAx, yp=y1+ Ay,

or Xp = X3 + &xy yp=ys t ey,

The line segments are parallel if the denominator is zero xuy, — x,y, = 0

The table below illustrates the relative positions of the line segments for different values of
Aande.

A e e e

b b b 0
a
0 0 a 0<e<l 1
b b ba
a
0<A<1 0 i—va 0<es<l1 1
b b ab
a a
1 0 0<es<l1 1
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3.12 Lines and circles

3.12.1 Proof:Line and a circle

There are three scenarios: the line intersects, touches or misses the circle.

Strategy: The cosine rule proves very useful in setting up a geometric condition that identifies
the above scenarios, which are readily solved using vector analysis. We also explore different
approaches governed by the type of equation used.

General form of the line equation

o=

A circle with radius r is centered at the origin
therefore its equation is *+yr=r (1)

The normalized line equationis ax + by + ¢ = 0

where 2+ =1
therefore x = —c——by Q)
a
— _b ¢
Substituting (2) in (1) (u) +yr =12
a
we have & + 2bcy + b*y* + a¥y? = a*r?
therefore (@ +b)y* +2bcy +*—a** =0
But a® + b? = 1, therefore ¥ +2bcy +F —a*rr =0 (3)

(3) is a quadratic in y where y=—bc=* VB —1) + a*r? (4)
Similarly x = —ac =+/c*(@* —1) + b*? )

The discriminant of (4) or (5) determines whether the line intersects, touches or misses the circle:
Miss condition (b — 1) + a** <0 (complex roots)
Touch condition (b* — 1) + a’? =0 (equal roots)
Intersect condition (> — 1)+ a?r* >0 (real roots)
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When either x or y is evaluated, the other variable is found by substituting the known
variable in (2).

The above proof is for a circle centered at the origin, which is probably rare, and if the circle
is positioned at (xc, ) the associated formulas become rather fussy. To avoid this problem it
is useful to leave the circle centered at the origin and translate the line by (—x¢, —y¢) and add
(xc yc) to the final solution.

The circle is located at the origin:

therefore *+yr=r (6)
but the line equation is translated (—x¢, —y¢)

therefore alx — (=x¢)) + by — (—y0)) +¢c=0

and ax + by + (axc+ byc+¢)=0

which becomes ax+by+cr=0 (7)
where cr=axc+ byc+c

Substituting (7) in (6) we obtain similar equations to those derived above:

x=—ac, = ,/c;(az —1)+b*r?
y=—bc, * \lc;(bz —1) + a?r?

but these have to be extended to accommodate the original translation to the line:

Coordinates of P X=x,—ac, * Jer(@ =1 +b*r?
Y=Y —be, * ,lc;(bz —1)+a*r?

where cr=axc+ byc+c
Miss condition A —-1)+a*r <0
Touch condition AM—-1)+ar?=0
Intersect condition AP —1)+a*? >0

Parametric form of the line equation

YA P

A circle with radius r is located at C(xc, yc) with position vector ¢ = x¢i + y(j
The equation of the line is p=t+Av
where [Iv]| =1 (8)
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for an intersection at P

Using the cosine rule
Substituting (8) in (9)
Identify cos 6

therefore

Substitute (11) in (10)

therefore

(12) is a quadratic where

and

llall=r or [lql>=7* or |iqI> —r* =0
llall* = 1AV + [Is]* = 2 [|Av]] - [[s]|cos 6

llgll> = A% [[vI[> + [Is* — 2 [[v]] - [Is]|Acos & 9)

llgll> = A% + [Isl|* — 2 [Is||Acos 6 (10)

sev=|s|| - ||v||cos 6

cosf = StV (11)
Is|]

llall* = A* = 2s=vA + [|s||?

lqlP = =N =2svA+||s|])—r*=0 (12)
A=sevEy(sev)’—|[s|]* +r° (13)
s=c—t

The discriminant of (13) determines whether the line intersects, touches or misses the circle.

Coordinates of P

where

Miss condition

Touch condition

Intersect condition (s*v)> —|ls|]* + >0

Xp = X7+ Ax,

Yp=yr+ Ay,

A=sevt s vy |} +7*

s=c—t
(sev)>—|s|]+7r<o0
(s*v)*—|ls|P+7*=0

3.12.2 Proof: Touching and intersecting circles

There are basically five scenarios associated with a pair of
circles: first, they are totally separate; second, they touch as
solid objects; third, their boundaries intersect; fourth, they
touch when one circle is inside the other; and fifth, one
circle is inside the other or possibly coincident. This proof
examines two strategies: one to detect when two circles
intersect, touch as solid objects or are separate, the other to

provide the points of intersection.

Strategy 1: Use basic coordinate geometry to identify the touch condition.

The diagram shows two circles with radii r, and r, centered at C,(x¢y, yc;) and Cy(xcy, yc2)
respectively, touching at P(xp, yp).
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For a touch condition the distance d between C; and C, must equal r; + r,:

d = \/(xcz - xc1)2 T ey, — )’c1)2

Touch condition d=r +r
Intersect condition ntr>d>|rn—rn)
Separate condition d>r +r
. t, T
Touch point X, = X, El(xcz —x,) and y, =y, + El(yC2 ~Ye)

Strategy 2: Use vector analysis to identify the points of
intersection.

This strategy assumes that the circles intersect.

The diagram shows a circle with radius r; centered
at the origin and a second circle with radius r, centered
at G, (xcp Yca)-

s is the position vector of the intersection point
P, (xp1, yp;) and will be used to identify the coordinates
of P,.

d is the position vector of C, and d = ||d|| is the C
distance between the circles’ centers.

T'is a point on d determined by the common chord passing through the two intersection
points. .

u is the vector TP, .

Euclidean geometry confirms that a line connecting the centers of two circles is
perpendicular to a common chord, hence u is perpendicular to d.

Let d = x,4i + y,j represent the vector CC,

then u= —yi+ x4

and d = ||| = [u]| 1)
llsil =71 and [|s|| = (2)

Let Ad represent the vector C?'

and (1 — A)d represent the vector FCZ

Therefore [|s1][* = A?||d|]* + &*[|ul|? (3)

and lls:II> = (1 = M) [|d|J? + & [[u]|® (4)

Subtracting (4) from (3) [Is1][* = [Is2l1* = 2 A [|d||* — ||d]|* (5)

rt—r +d

Substituting (1) and (2) in (5) A = - "
2
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2 4212 2

From (3) &2 :M:ﬁ__/\z

[[ul d*

2

T,

g== ? -\ (6)

and s =Ad + eu

However, the coordinates of P; must be translated by (x¢;, y¢;) as one circle was centered at

the origin.

Touch condition d=r+rn

T,
Touch point X, = X +EI
Miss condition d>r +r
Intersect condition d<r +r

Point(s) of intersection

2 2 2
n r2+d

where A= >
2d

and e =

Xpp =Xc1 + Axy; — ey,

Xpy = Xc1 + Axg + &y,

d= \/(xcz - xa)z + (e, — )’c1)2

T
(Xc, —%g) and  y, =y, +gl()’c2 ~ Vo)

Yp1 = Yo T Ayg t+exy
Y = Yo T Ayg — exy
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3.13 Second degree curves

3.13.1 Cirde
General equation

The general equation of a circle is based upon the Y\
Pythagorean theorem, where a point P(x, y) on the circle is p
related to the radius:

?+yr=r

If the circle’s center is offset from the origin, the x and X X
y-coordinates are offset to accommodate the translation:

center (x, yc) (x—x)+ @ —y)=r

Parametric equation

By making the angle of rotation a parameter, the x and y-coordinates can be written as:

X =rcost

Center origin )
y =rsint

} 0=t=2m

xX=x, + rcost

or with an offset center (x .
wi (%o ye) y =y, trsint

} 0=t=2mw

3.13.2 Ellipse

General equation

Let the two foci be (¢, 0) and (—c, 0),and P(x, y) be a point on Y
the ellipse.

Distance |AP| = \/(x —c) +(y—0)y

and IBP| = \(x + ) + (y — 0)?

However, an ellipse is defined such that 2a = |AP| + |BP|

therefore \/(x —of+y = \/(x +e)’ +y' =2a
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and \/x2—2cx+c2+y2=2a—\/x2+26x+c2+y2
then X —2cx+ P4y =4a” —daJ(x+ ) +y AP 2+ P+ Y

—4cx = 4a” —dar(x +¢)* + y°
a’ +cx = ayJ(x +c)* + yz
Squaring both sides a' +2a’cx +’x* = a’((x +¢)’ + y?)

a* + 2a’cx + Ix* = a’x* + 2a%cx + a’c® + a¥y?

a2(a2 _ C2) — xz(az _ CZ) + a2y2

but a2=b"+c* or b=a*—c
therefore a’b? = x*b* + a*y?
2 2
x
and -t Z—z =1
a

If the center is offset by (x,, y.) the equation becomes

_ 2 _ 2
—x )  O=y) _
a’ b’

1

Parametric equation

By making the angle of rotation a parameter the x and y-coordinates can be written as

X = acost

Center origin .
& y = bsint

} 0=t=2m

or with an offset center (x,, y,)

X=X, + acost
y=7. + bsint
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3.13.3 Parabola
General equation

By definition, the parabola maintains r = s where (0, p)
is the focus.

Then r=yx*+@—p} and s=y+p

and X+ —pP=+p?
CHy-ypt+pt=y+2yp+p’
x* = 4py

or if the axes are reversed y* = 4px

If the center is offset by (x,, y.) the equation becomes

(x —x)* = 4p(y — y.)

or (v = o) = 4p(x — x.)
Parametric equation
If we make y=1z
and x = 2\/;t
then t=\/; and t=L
24p
and \/_ - _*
2p
2
therefore y = x
4p
x* = 4py

Therefore, the parametric equations are

x=2\/;t )/:tz

If the axes area reversed

x = }/=2\/;t

To offset the parametric equations, add (x, y.).

©.p)

directrix
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3.13.4 Hyperbola
General equation

By definition, the hyperbola maintains |BP| — |PA| = 2a

where |BP| = \/(x +¢)* + y*
|PA| = \J(x —¢)* + y*
therefore \/(x +¢)? + y2 — \/(x - + y2 =2a
A (x + c)2 + y2 =2a—4/(x— c)2 + y2
Squaring both sides  x* +2cx +¢* + y* = 4a” — 4a\/m +x’ —2ex+ct+ )y

cx—a* = —a\(x—c)* + y*

Squaring both sides  ¢*x* — 2a%cx + a* = a’x* — 2a’cx + a’c* + a*y?

(C2 _ aZ)xZ _ aZyZ — u2(c2 _ aZ)

Let b=~Nc*—a

then b*x* — a*y* = a*b?
2 2

therefore LA A
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3.14 Three-dimensional straight lines

3.14.1 Proof: Straight-line equation from two points

Strategy: Create a vector from two points and use a parameter
to identify any point on the vector.

P, and P, are the two points and p; and p, their respective
position vectors.

Let V=p,— D1
therefore p =p: + A\v where \ is a scalar.

P is between P, and P, for A € [0, 1].
If ||v|]| = 1, X corresponds to the linear distance along v.

3.14.2 Proof: Intersection of two straight lines

Strategy: Step 1: Ensure that the two lines are not parallel.
Step 2: Ensure that the two lines touch.
Step 3: Compute the intersection point.

Given two lines p=1t+ Aa and q=s+¢b
where t=xi+yjt+tzk and s=xi+yj+zk ‘
a=x,i+yj+tzk and b=x,i+yj+zk Z X

Step 1: If a X b = 0 the lines are parallel and do not intersect.

_ It =s)«@axb)|

Step 2: The distance between two skew lines is given by d [[a  bl]

If (t — s)+(a X b) # 0 the lines do not intersect.
Step 3: Equate the two line equations:

(xd+ yj + zKk) + Nx i+ y,j + zk) = (xdi + yj + zk) + e(x,i + ypj + z,k)
Collect up the components

(= xs+ Nxg—exp)i+ (), —ys T Ny, —€yp)j + (2, — 2z, + Nz, — ezp)k =0
For this vector to be null, its components must vanish. Therefore, we have

AXx, — &exp = X, — X;

Na = €y = Ys = Wi
Nz, — ez, =z, — z;

which provide values for A and & which, when substituted in the original line equations reveal
the intersection point.
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3.14.3 Proof: Angle between two straight lines

Strategy: Use the scalar product of the two line vectors to reveal
the enclosed angle.

Let the line equations be p=r+ha
and q=s+eb

The angle between the two lines is the angle between the
vectors a and b and is given by

a*b = ||a]| - ||b]| cosa

a=cos ! (£J
llall - [Ibl|

If|la]] = ||b]| =1 a=cos '(a+b)

3.14.4 Proof: Three points lie on a straight line

Strategy: If two vectors are created from the three points, the
vectors must be linearly related for the points to lie on a
straight line.

Given three points P;, P,, P3

let r=PBP, and s= PP,

therefore s = \r

for the points to lie on a straight line, where \ is a scalar.

3.14.5 Proof: Parallel and perpendicular straight lines

Let the line equations be p=r+pua
and q=s+eb
Parallel lines

p and q are parallel if a = A\b where \ is a scalar.
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Perpendicular lines

p and q are perpendicularifa<b =0

3.14.6 Proof: Position and distance of a point on a line perpendicular
to the origin

Strategy: The nearest point to the origin forms a perpendicular to the origin.

Let the line equation be p=t+Av (1)
Let P be such that p is perpendicular to v
therefore vep=0 (2)
Derive v+ p using (1) Vep=ve(t+AV)=vet+vevA =0 (3)
Substitute (2) in (3) VeVA = —vet
therefore A= vt

Vev
If|lv]| =1 A= —v-t
Position vector p=t+tAv
Distance OP = ||p||

3.14.7 Proof: Position and distance of the nearest
point on a line to a point

Strategy: The shortest distance from a point to a straight
line is a perpendicular to the line. Use vector analysis to
determine the distance.
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Let the line equation be q=t+Av (1)

and Q be the nearest point on the line to P

therefore p=q-+tr

and vep=veqtver

r is orthogonal to v, therefore ver=10

and vep=veq

From (1) veq=vVvet+Avev
ve(p—1t)

therefore A=

Vev

If|lv]| =1 A=ve(p—1t)

Position vector q=t+Av

Distance PQ=rll =llp — qlf = [lp — (t + V)|

3.14.8 Proof: Position of a point reflected in a line

Strategy: Exploit the fact that the line’s direction vector is orthogonal to the line connecting a
point and its reflection. Note that this strategy is identical to the 2D case.

Pis an arbitrary point and Q is its reflection with p and q their respective position vectors.

Let the line equation be s=t+A\v

therefore p=t+r

and q=t+r’

therefore ptq=2t+r+r (1)

r — r' is orthogonal to v, therefore ve(r —r’) =0

ver=ver’ 2)
r + r’ is parallel to v, therefore r+r =ev 3)
Substitute (3) in (1) ptq=2t+ev

therefore q=2t+ev—p
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From (3) ve(r+1') =gvev
ot + ot
and _yerrver (4)
Vev
. . 2Ver
Substitute (2) in (4) =
Vev
but r=p-—t
2ve(p—t
therefore £= ey (5)
Vev
If|lv]| =1 e=2ve(p—1t)
Position vector q=2t+ev—p
3.14.9 Proof: Normal to a line through a point
Let the line equation be q=t+Av (1)
Given a point P, there exists a point Q such that vectors u and v are orthogonal.
Therefore q=p-—u (2)

From (1) and (2)
therefore

v and u are orthogonal

therefore

If|lv]| =1
From (1) and (2)

The line equation for the normal is

t+Av=p—u

Vet FAVev=vep +Vveu

veu=20

P AL )
Vev

AN=ve(p—1t)

u=p— (t+Av)

p + eu
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3.14.10 Proof: Shortest distance between two skew lines

Strategy: The nearest point to a line will lie on a perpendicular
to the line. Therefore, given two skew lines (lines that do not
intersect and are not parallel) the shortest distance between
the lines will be on a mutually perpendicular to both lines.
This means that the cross-product of the two lines will be a
vector parallel to the perpendicular and can be exploited by
vector analysis. A parametric approach provides an elegant
solution to the problem.

Let the line equations be P=q+A\v
and p=q +1

The shortest distance d between the lines is the magnitude of the vector TT" which is
perpendicular to both lines.

Therefore oT = qtAV (1)
and oT' = q+7v (2)

But TT' is perpendicular to vand v’ and parallel to v X v’

7 = 4 (v Xv)
therefore " v Xy
but OT' = OT +TT'
—  ——  d-(vXV)
therefore OT"=0T+————7 (3)
[v>xv]
Take the scalar product of (3) with v X v’
R, R, . X ’
(vXv)+ 0T = (v X v') + OT + (v x v') » =V XV)
llv > v'||
(va’)-(?T=(va’)-(ﬁW—d-Hva’” (4)

Substitute (1) and (2) in (4)

(VXV)e (@ +Tv)=@XV)e(qtAv) +d-|vXV|
QXYY+ TV e (VXV)=qe(vXV)F NV (vXV)+d- v XV

But v« (v X v') =0 and \;ve (v X V') asv,v and v X v’ are mutually perpendicular.
Therefore (@ —qQ - (vXV)=d-|lvXxVv|

_[@-q)-vxv))
llv X v|

therefore the shortest distance is d
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3.15 Planes

3.15.1 Proof: Equation to a plane
Cartesian form of the plane equation

Strategy: Let n be a nonzero vector normal to the plane and
P(x, y, z) be a point on the plane, which also contains a point
Py(x, yo» 2o)- Use vector analysis to derive the plane equation.
Note that the strategy is similar to that used for the equation
of a line.

Let n=ai+bj+ck

and Po = xol + yoj + zok

and p=xi+y +zk

therefore q=PpP—Po

As n is orthogonal to q n-q=0

therefore n*(p—py) =0

and nep=n-p, (1)
therefore ax + by + cz = axy + by, + ¢z,

But ax, + by, + cz, is a scalar quantity associated with the plane and can be replaced by d

ax +by+cz=d

where d = axy + by, + cz,
The value of d also has the interpretation:
from the diagram h = ||p|| cos a
therefore n-po = ||n|| - ||pol] cos @ = h||n]|
Therefore the plane equation can be expressed as
ax + by + cz = h|n|| (2)

Dividing (2) by ||n|| we have Lx+—y+Lz=h
[l il ™ [nl]

where h is the perpendicular from the origin to the plane, and ||n|| = Va* + b* + ¢’

General form of the plane equation

The general form of the equation is expressed as
Ax+By+Cz+ D=0
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which means that the Cartesian form is translated into the general form by making

A=a, B=b, C=yg D=—-d
The individual values of A, B, C, D have no absolute geometric meaning as it is possible to
multiply the equation by any scalar quantity to produce another equation describing the same
plane. However, as there is a direct relationship between the Cartesian form and the general
form, the values of A, B, C can be associated with a vector normal to the plane, but the
direction of the vector can be in one of two directions: directed from one side of the
plane or the other side. The orientation of this normal vector is resolved by the Hessian
normal form.

Hessian normal form of the plane equation

The Hessian normal form of the plane equation scales the general form plane equation by a
factor to make the magnitude of the plane’s normal vector equal to 1,i.e. a unit vector.

For the plane equation Ax+By+Cz+ D=0
. 1
the scale factor is ——————
VA? + B2 +C?
therefore Ax By Cz D =0

+ + +
\/A2+B2+02 \/A2+BZ+C2 \/A2+BZ+CZ \/A2+B2+C2

A B

Let n=—— n=-—-—
VA? + B* 4+ C? VA2 + B2+

C D
n, = —e =

p = —_—
VA’ + B +C VA’ + B +C°
which allows us to write the Hessian normal form of the plane equation as
mx+ny+mnz+p=0

This can also be expressed using vectors:

if p=xi+y +zk (a point on the plane)
and n = mi + nyj + nzk (the unit normal vector of the plane)
then nep=—p

The positive and negative values of yA? + B* + C* provide the two potential
directions of the unit normal vector. However, by convention, only the positive value of

VA* +B*+C? is considered. Furthermore, the side of the plane that lies in the direction
of n is declared the positive side whilst the other side of the plane is declared the negative
side. This partitioning of space creates two half-spaces.

We have seen above that n « p = —p, where p is the perpendicular distance from the plane
to the origin. Therefore, if p > 0 the origin lies in the positive half-space, and if p < 0 it lies in
the negative half-space. If p = 0 the origin lies on the plane.
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Parametric form of the plane equation

Let vectors a and b be parallel to the plane and the point
T(x7, y1> z7) be on the plane.

Therefore c=Aa+eb
and p=ttc <
therefore Xp = xp + Ax, + &x;

yp=yr+ Ay, + ey,
zp=zr + Az, + ez,

If a and b are unit vectors and are mutually perpendicular,i.e.a «b = 0, A and & become linear
measurements along the a and b axes relative to T.

Converting from the parametric form to the general form

Strategy: First compute the values of A and ¢ that identify a point P perpendicular to the
origin, then determine the individual components of the plane equation.

c=Ala+eb

p=t+c
therefore p=t+ia+eb (3)
But a and b are perpendicular to p
therefore a*p=0 and bep=0
Computea+pusing(3) asp=a-t+Ararateab=0 (4)
Computeb-pusing(3) bep=b-t+rab+eb:b=0 (5)
From (4) ast+ Alja)|*+ea*b=0 (6)
From (5) bet+Aa+b+g|b|*=0 (7)

To eliminate & multiply (6) by ||b||* and (7) by a * b and subtract
@@+ t)|[b||* + Alfa|’[[b[* + z(a * b)][b][* = 0
(a*b)(b+t) + A(a*b)> + g(a+b)|b|[> =0
(@ OI[b]|* + Alla|P[[bl[* — (a-b)B* ) — Aa+b)* =0

A = (@sb)(bet) — @-1)[b]?
[[a]l*[[bI* — (a~b)?

To eliminate A multiply (6) by a * b and (7) by |[a||* and subtract
(a*b)(a*t) + A(a-b)|ja||* + e(a*b)* =0
(b t) [[a]|* + A(a* b)|[a]|* + e[a]*[b]|* = 0
(a+b)(@a*t) + e(a+b)* — (b t)[a|* — &l[a][*|[b]|* = 0
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. @-b)a-t)— (bl
[[al” [IbIP* — (a « b)*

Substitute A and ¢ in (3) to identify the point P(xp, yp, zp) perpendicular to the origin.
If vectors a and b had been unit vectors, A and &€ would have been greatly simplified:

_ (a+b)(b-t)—a-t
1—(a-b)

A

e (asb)(@ast)—bet
1—(a-b)?

P’s position vector p is also the plane’s normal vector.
Then Xp = X7+ Ax, + &x;

yp=yrt Ay, + ey
zp=zr+ Az, + ez,
The normal vector is p = xpl + ypj + zpk

and because ||p|| is the perpendicular distance from the plane to the origin we can state

Zp

lIpll

Xp Jp

TR z=|lpl
el lipll

y+

or in the general form of the plane equation

Ax+By+Cz+D=0

Xp _ %p

lIpll lIpll lIpll

D=—pl

where

3.15.2 Proof: Plane equation from three points

Strategy: Given three points R, S and T create two vectors

u = RS and v = RT . The vector product u X v provides a
vector normal to the plane containing the points. Take

another point P(x, y, z) and form a vector w = RP.The
scalar product w * (u X v) = 0 if P is in the plane containing
the original points. This condition can be expressed as a
determinant and converted into the general equation of a
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plane. The three points are assumed to be in a counter-clockwise sequence viewed from the
direction of the surface normal.

Let the three points R, S, T and a fourth point P(x, y, z) lie on the same plane.

Let u=RS and v=RT
i j k
then uxXv=|x  y, 2
DA
Let w = RP

As w is perpendicular tou X v

x‘W yW ZW
we(uXv)=|x, y, 2z, |=0
xV y'l/ Z'V

Expanding the determinant we obtain

X yu Zu —|—)/ Zu xu + z xu yu =0
e )/V ZV g ZV 14 v xV y'l/
which becomes
- zZ.— 2 Z.— 2, X.—X
(x—x,)| s Yr %" % +(y—y)|s R Ts
Rlyr = 2~ 2% Rlzp—zp xp = x4
+(z—2p) xS:xR ys:)’R =0
Xr =Xg Yr g

This can be arranged in the formax + by + cz+d =0

Zg T Zp Xy T Xp

where a=|Ys " r % T %R
Zr TZp *r T X

Yr = JVr %1 T %

b=

c=|%"* Vs Jr

X=Xy Yy~ Yy d = —(ax, + by, +cz;)

or
1 yr 24 x, 1 zp
a=|1 y¢ z b=|x; 1 z
1y, z x, 1z
X, yp 1
c=lx y; 1 d = —(ax, +by, +czp)
X ypo 1
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3.15.3 Proof: Plane through a point and normal to a line

Strategy: Use the general equation of a plane as this
incorporates a surface normal and recognizes points on the
plane.

Let the plane equationbe ax+ by +cz+d=10

where P(x, y, z) is any point on the plane

and n=ai+ bj+ck

therefore n p+d=0

Given Q(xg, Yo» 2g) neq+d=0

therefore n*p—-n+q=0

and ax + by + cz— (axq+ byg + czg) =0

3.15.4 Proof: Plane through two points and parallel to a line

Strategy: Create one vector from the two points and another YT R
from the line. The vector product of these vectors will be normal M

to the associated plane. b N

Let the line be p=r+la X‘

where a=x,i+yj+zk /\
z

and the two points are My yap2zy) and  N(xy, yn, 2y) X
therefore b= (xy—xp)i+ Wy — Yy + (2y — zpk
but aXb=n
where n=ai+ bj+ck
and a= yu Za b= Z xa c= xa ya
Yo % % % X My

Let the plane equationbe ax + by +cz+d=10
As the point M is on the plane

axy + byy+czy+d=0
The plane equation is ax + by + cz — (axy + byy + czy) =0

3.15.5 Proof: Intersection of two planes

Strategy: Two non-parallel planes will intersect and form a
straight line, which is parallel to both planes. The vector
product of the planes’ surface normals reveals the direction
vector of the intersection line, but a point on the line is
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required to secure a unique line equation. A convenient point is perpendicular to the origin.
Three simultaneous equations are now available to reveal the line equation.

Let the plane equations be np+d =0 n,*p +d,=0
where n, =aji+bj+ck n, = a,i + byj + .k
and p=uxi+y +zk

Let the line of intersectionbe p = p, + Ans

where p is the position vector for any point P on the line
Po is the position vector for a known point P, on the line
n; is the direction vector for the line of intersection

A is a scalar.
The direction vector is n; =asi + b3j + csk=n; Xn,

Py must satisfy both plane equations, therefore

n;*po = —d (1)
and n,*py = —d, (2)
P, is such that p, is orthogonal to n;
therefore n;*p, =0 (3)

Equations (1), (2) and (3) form three simultaneous equations, which reveal the point P,.

—d, a b ¢ X,
—d, |=|a, b, ¢, ||
| 0 a, b, «c, z,
rdl a b ¢ X,
or dz = a4, bz ) Yo
0 a, b, c, z,
Therefore
X — Yo — %y _ —1
dl bl Cl al dl Cl al bl dl DET
d2 b2 CZ a2 dZ CZ a2 b2 dZ
0 b3 cy a, 0 c, a, b3 0
d, b ¢ —d b, ¢
x = b3 C3 bS CS
0 DET
A% Gl_gl% 6
2la o 1 a, c,
Y=
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d, 4 Zl —d, &) Zz
z = a3 3 aS 3
0 DET
al bl 1
where DET =|a, b, ¢,
a.’) b3 C3

The line of intersectionis p = py + An;
If DET = 0 the line and plane are parallel.

3.15.6 Proof: Intersection of three planes

Strategy: Solve the three simultaneous plane equations
using determinants.

The diagram shows three planes intersecting at the point

P(x, y,2).

Given three planes ax+by+cz+d =0
ax + by +cz+d,=0
a3x+b3)’+(:3z+d3:0

_dl 4 bl B! x
they can be rewritten as —d, |=la, b, ¢, ||y
|~ a; by ¢ ||z
d, a b ¢ x
or dy |==|a, b, ||y
| 4 a; by | |2
X - b4 _ z _ 1
d b ¢ a d ¢ a b d DET
d, b, ¢ a, d, ¢ a, b, d,
d3 b3 C3 a3 d3 C3 a3 b3 d3
a b c
where DET =|a, b, «c,
a, b, ¢
d b ¢ a d ¢ a b d
4 b oo a, d, a, b, d,
therefore x:_u __1% 4 7 =— a; b, d,
DET 7 DET DET

If DET = 0, two of the planes, at least, are parallel.
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3.15.7 Proof: Angle between two planes

Strategy: Use the dot product to find the angle between the

planes’ normals.

Given the plane equations
and

where

and

then

and

If ||my || = [Inaf| = 1

ax; + by, t cz; +d; =0
ax, + by, +cz;+d, =0
n, =aji+ bj+ck
n, = a)i + byj + ¢k

00y = [[ny]] - ||ng| cos a

nen
a=cos | 12
[l | - [[m, ]

a = cos !(n; *ny)

3.15.8 Proof: Angle between a line and a plane

Strategy: Use the dot product to find the angle between the
plane’s normal and the line’s direction vector.

Given the plane equation
where
and the line equation

therefore

and

If ||nf| = |]v]| =1

ax +by+cz+d=0
n=ai+ bj+ck
p=t+Av

n+v=|n|| - ||v||cos «

Ve COSI(L)
[|n] - [[v]|

a=cos {(n-v)

When the line is parallel with the planen+v =10

3.15.9 Proof: Intersection of a line and a plane

Strategy: Solve a parametric line equation with the

general equation for a plane.

Let the plane equation be

where

ax+by+cz+d=0
n=ai+bj+ck

P is a point on the plane with position vector

therefore

p=xi+ty +zk
n‘p+d=0
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Let the line equation be p=t+Av

where t=xid+tyj+zk and v=xi+yj+zk

They intersect for some A n*(t+Av)+d=n<t+Anv+d=0

therefore A= “net+d) for the intersection point.
nev

If [[n]| = |Iv|| = 1 A=—(n-t+d

The position vector for P is p=t+Av

If n » v = 0 the line and plane are parallel.

3.15.10 Proof: Position and distance of the nearest point on a plane to a point
General form of the plane equation

Strategy: Express the plane equation as the scalar product
of two vectors and use vector analysis to identify a point

Q on the perpendicular from a point P to the plane.

Let Q be the nearest point on the plane to P.

Let the plane equation be
where

and

therefore

r is parallel to n, therefore
and

but

therefore
Substitute (1) and (2) in (3)

therefore

If ||| =1

but

Position vector of Q
Distance of Q

If Inj] = 1

ax+by+cz+d=0
n=ai+bj+ck
q=xi+yj+zk
n+q=—d

r=An
n*r=An-n
r=q-p
n*r=n+q—n-<p

Anen=—(n<p+d

N —(n-ptd
nen

A=—(n+p+d

q=p+tr

q=p+An

PQ = ||r[| = ||An]]

PQ = |A|

(1

()

3)
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3.15.11 Proof: Reflection of a point in a plane

Strategy: Exploit the fact that a line connecting a point and
its reflection is parallel to the plane’s normal.

Let the equation of the planebeax + by + cz+d =10

T is the nearest point on the plane to O and t is its position Z —
vector. X
If n=ai+bj+ck

then net=—d (1)

Pis an arbitrary point and Q is its reflection, with their respective position vectors p and q.
r + r’ is orthogonal to n

therefore ne(r+r')=0
and ner+n-r =90 (2)

p — qis parallel with n

therefore P—q=r—r' =An (3)

where A= r-r (4)
n

but r=p-—t (5)

Substitute (1) in (5) n*r=n*p—n*t=n-<p-+d (6)

er—ner  2ne
Substitute (2) and (6) in (4) A= - 2T _ 2T

nen nen
A= 2(nep+d)
nen
If[n]| =1 A=2n-p+d
Substitute \ in (3) P—q=An
Position vector of Q is q=p— An

3.15.12 Proof: Plane equidistant from two points

Given two distinct points we require to identify a plane such
that any point on the plane is equidistant to the points.

Strategy: The key to this solution is that the normal of the
plane is parallel to the line joining the two points.

Let the plane equation equidistant to P,(xy, y;,2;) and
Py(xy,y3,2,) beax + by +cz+d=0

P(x,y, z) is any point on this plane which contains Q
equidistant to P; and P,.
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Let n=ai+bj+ck=p,—p (1)
and qul+%n:%(P2_p1) 2)
then n*(p—q =0

therefore n*p=n-q

But the plane equationis n*p +d =0
therefore d=-n+p=-n-+q 3)
Substituting (1) and (2) in (3)

d=—(p,—p)(p,+3(,—p)) =3, —p) (P, +p)
The plane equation is

(p, —p)@—3(,+p)) =0

or (x, —x)x+(y, = y)y +(z, —zl)z—%(xg —xl+y -y +z—z)=0

3.15.13 Proof: Reflected ray on a surface

Strategy: Invoke the law of reflection using vectors: The law of
reflection states that the angle of incidence equals the angle of
reflection. The incident ray, reflected ray and the surface normal
all lie in a common plane.

Let n be the surface normal vector
s be the incident ray
r be the reflected ray
0 be the angle of incidence and reflection
then v=s+ An
and r=v+An
therefore r—An=s+ An
and r=s+2An (1)
Take the dot ner=ne<s+2\n*n (2)
product of (1)
but by symmetry
ner=n-+(—s)=-n-s (3)

Substitute (3) in (2)
—ne*s=n-+s+2An-*n

—nes
then A= non
If n]| = 1 A=—2n-s

If 6 = 90° r=s
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3.16 Lines, planes and spheres

3.16.1 Proof: Line intersecting a sphere

There are three scenarios: the line intersects, touches or misses the sphere.

Strategy: The cosine rule proves very useful in setting up a geometric condition that identifies
the above scenarios, which are readily solved using vector analysis.

Parametric equation of a line

A sphere with radius r is located at C with position vector ¢ = xq + yqj + zck

The equation of the line is

where
For an intersection at P

Using the cosine rule

Substituting (1) in (2)
Identify cos 6

Therefore
Substitute (4) in (3)
Therefore

(5) is a quadratic where

and

p=t+Av
vl =1

lall=7 or llalf =7* or [lql =r* =0

llall* = 1AV +Islf* = 2/|Av]] - [l cos &
llall* = A*[IvI* +[lsI” = 2wl - [lsllA cos &
llall* = A%+ [ls* =2 llsll A cos®

sev =|fs|| - [[vl][cos 6

llall*= A* =25+ vA + sl

||q||2 —2 =A% —2sevA + ||s||2 —t=0

A=sev i\/(s-v)2 —|Islf +7*

s=c—t

(1)

(2)
(3)

(4)

(5)

(6)
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The discriminant of (6) determines whether the line intersects, touches or misses the sphere.

Position vector for P p=t+Av

where A=sev+ \/(S.V)Z — ||s||2 442
s=c—t

Miss condition (sev)* —|ls|F +7* <0

Touch condition (sev) —|Is|F +7* =0

Intersect condition (sev)* —|ls|F +7* >0

3.16.2 Proof: Sphere touching a plane

Strategy: A sphere will touch a plane if the perpendicular
distance from its center to the plane equals its radius. The
geometry describing this condition is identical to finding the
position and distance of the nearest point on a plane to a point.

Given the plane ax+by+cz+d=0

where n=ai+bj+ck

The nearest point Q on the plane to a point P is given by

q=p+ An (1)
p+d
where A=-— 2P
nen
The distance PQ = |[An||

If P is the center of the sphere with radius r, and position vector p the touch point is
also given by (1)

when PQ=||An|| =+
If [n]| = 1 A=—(m-p+d

3.16.3 Proof: Touching spheres

Strategy: Use basic coordinate geometry to identify the touch condition.

The diagram shows two spheres with radii ; and r, centered at C,(X¢y, Yei, Zc1) and
Cy(Xc2 Yoo Zc2) respectively, touching at P(xp, yp, zp).

For a touch condition the distance d between C; and C, must equal r; + r,:

d= \/(xcz - xc1)2 0, _yc1)2 t(zg, — Zc1)2
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Touch condition
Intersect condition

Separate condition

Touch point

d=1’1+r2

T1+r‘2>d>|71—

d>r +r

r
= 1
Xp = Xep + d (xcz

2]

— X

o)

r
Ip = Vo +El()’c2 ~ o)

P

h
Zp, =2 -1—E(zc2 -z

a)
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3.17 Three-dimensional triangles

3.17.1 Proof: Point inside a triangle

Strategy: A point Py(x, ¥y, 2o) within the boundary of the triangle can be located using
barycentric coordinates.

Let Py (x1, ¥1, 21), Py(%2, ¥2, 2,) and Ps(x3, y3, z3) be the vertices
of a triangle.

Using barycentric coordinates we can write
Xo = &x; + Ax, + Bxs

Yo=¢&n t Ay, t Bys
Zy = €z, + Az, + Bz;
where et A+B=1

P, is within the boundary of the triangle if e+ A + 8 =1 and (&, A, B) € [0, 1].

3.17.2 Proof: Unknown coordinate value inside a triangle

Strategy: Given a triangle with vertices P}, P,, P; and a point Py(xo, ¥y, Z), Where only two of
the coordinates are known, the third coordinate can be determined within the boundary of
the triangle using barycentric coordinates.

For example, if x, and z, are known we can find y, using barycentric coordinates:

Xo = &x1 + Ax, + Bx;

where et A+B=1
Therefore X0 — x3 = &(x; — x3) + A(xy — x3) (1)
Similarly 20— z3=¢&(z; — z3) + Mz, — z3) (2)

Using (1) and (2) we can write

€ _ A — 1
Xo T X5 X T X X TX X T X R T B
z,— 2, z,—2, z2, -z, z,—2z, 2,72 %,72
and € = A = !
x, z, 1 X, 2z, 1 x z 1
x, z, 1 x, oz, 1 x, z, 1
x, 2z, 1 x oz 1 X, zy 1
Therefore Yo=¢€y + Ay, + By

P, is within the boundary of the triangle if e+ A + 8 =1 and (&, A, 8) € [0, 1].
Similar formulas can be derived for other combinations of coordinates.
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3.18 Parametric curves and patches

3.18.1 Proof: Planar surface patch

Strategy: Locate the position of a point on a patch by
linearly interpolating across the patch.

Given four points Py, Py, Py, Py; in R? or R® that
form a patch

Py = (1 = u)Py + uPy

where u € [0,1]

Puzz(l_u)P(an_uPll POO u ;PIU

P, = (1 —v)[(1 — w)Py, + uPyy] + v[(1 — u)Py, + uP;;] wherev e [0,1]

Or in matrix form
_ -1 1|[B, B, |[-1 1][¥
T e

3.18.2 Proof: Bézier curves in R? and R3
Linear interpolation

Two scalars V; and V, can be linearly interpolated using
V:(l_t)V1+tV2, te [0,1]
where the sum of the interpolating terms ((1 — ¢) + ¢) = 1 (1)

Quadratic interpolation using Bernstein polynomials

From (1) (Q-n+p=1 (2)
andwhenn=2 (1-8)+=0Q-+2t(1—-1)+£=1
which produces the quadratic interpolant:

V=01—-1V,+2t(1 — t) + t2V,

The individual terms are called quadratic Bernstein polynomials and are generated by

21

= mtk(l - t)z_k, te [O, 1]

Bk,z(t)

giving By,(H) = (1 — 0N2=1-2t+¢2
Bi,(t) = 2t(1 — t) = 2t — 2¢*
B,,(t) = £
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The graphs of the three polynomials are shown in the diagram.
The central term 2t(1 — t) = 0 when t = 0 and ¢t = 1, and therefore does not influence the
start and end values of the interpolated value.

Furthermore, the central term can be used to !
influence the nature of the interpolant for 0 < ¢ < 1. 08 (1= z
The complete quadratic interpolant becomes 0.6 2(1 — 1)
0.4
V() = (1= 02V, +2t(1 — )V + £V, 02
where V. is some arbitrary control value.
0.2 0.4 0.6 0.8 1

Quadratic Bézier curve in and R2 and R3

A quadratic Bézier curve employs the above quadratic Bernstein polynomials to interpolate
the coordinates of two points using a control point p¢

p(t) = (1 — )%p, + 2t(1 — t)pc + £p,
or in matrix form

1 —2 1||p
py=[* t 1]|-2 2 0 pé
1 0 0 P,

Cubic Bézier curve in R? and R3

Whenn=3in(2) (1—-+8=Q0-0+3t(1 -1 +321 -1+ =1
The individual terms are called cubic Bernstein polynomials and are generated by
31

-0k, relo,1]

B =G —mn

giving Bps() =(1—1=1-3t+32—7¢
By 5(f) = 3t(1 — 1) = 3(t — 2> + 1)
Bys(t) =321 — t) = 3(2 — )
Bys(t) = ¢

The graphs are shown in the following diagram.
The central terms 3#(1 — £)> =0and 3/3%(1 — ) =0

when t = 0 and ¢ = 1, and therefore do not influence 1
the start and end values of the interpolated value. 0.8 (1 -3 A
Furthermore, these terms can be used to influence the 06
nature of the interpolant for 0 < ¢ < 1. 04 311 — % 3(1 =07
The complete cubic interpolant becomes 0'2
0.2 04 , 0.6 0.8 1
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V(1) = (1 — £)3Vy + 3t(1 — 1)*V¢ + 382(1 — )V + £V,
Therefore, a cubic Bézier curve has the following form:

p(t) = (1 — O°py + 3t(1 — t)’pcy + 38(1 — Opcz + £,
or in matrix form

-1 3 =3 1|l P,

_ 43 42 3 6 3 0P,
ORI [ A S
10 0 0fp,

In general, a Bézier curve has the form:

pt) = (’;)ti(l—t)"ipi for0<i=n

or p(t) = i(?)ti(l - t)niipi
i=0
or p(t) = g(?)Bﬂrt(t)pi where B, (1) = (?)ti(l —p)

3.18.3 Proof: Bézier surface patch in R?

A Bézier surface patch is defined as

p(u, v) = i i Bi,m (u) Bj,n ) Pi,]'

i=0 j=0

where Bi’m(t)=('?)ti(l—t)m_i and Bj,n(t)=(’]?)tj(1—t)""'

Quadratic Bézier surface patch in R

A quadratic Bézier surface patch is defined as

2 2
p(u,v) = Z Z B, (u)BJ.’2 ) P,

i=0 j=0

where B ,(u) = (?)ui(l —u)*"  and B;,,(v) = G)Vj a—v’
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which means that p;; is a 3 X 3 matrix of 3D control points.

2 2 Py Pou Py || (1—- V)z
Or in matrix form p(w,v) =[1—u)" 2ul—w)u’]| p, P, Py, |20 - 2]
PZO p21 P22 v

, 1 =2 1|[Py Py Pl 1 —2 1]+
or pw,v)=[uw wu 1=2 2 0|lp, Py Pp|[-2 2 O 11/
L0 0flpy Py Py 00

The diagram shows an example.

Cubic Bézier surface patch in R®

A cubic Bézier surface patch is defined as

3 3
p,v) =2 > B, B, ,(p, ;

i=0 j=0

where B ,(u) = (?)ui(l —u)’”  and Bj,z(") = G)Vj 1=’

which means that p;;is a 4 X 4 matrix of 3D control points.
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Or in matrix form

Py
pw,v)=[1— u)3 3u(l — u)? 32 1—u) u3] Py
Py
P3

or

Py Py
Py Py

1 0 0 0

-1 3 =3 1||Pyw Pa
I 3 =6 3 0]|Py Py
pw,v)=[v" u’ u 1] 3 3 0 0 10

The diagram shows an example.

pOl
Py
Py
p3l

pOZ
PIZ
p22
P

Pis

[ NN

1
= <

< Yo ow
S — |




4 Glossary

abscissa The x-coordinate of the ordered pair (x, y).

acuteangle An angle between 0° and 90°.

acute triangle A triangle that has all interior angles <<90°.

adjacent (angle, point, side, plane) Lying next to another angle, point, side, plane.

affine transformation A function with domain and codomain R?, with a rule of the form
x B> Ax + a,where a is a vector with two components and A is a 2 X 2 matrix.

altitude (of a geometricfigure) The perpendicular from a vertex to the opposite side, or the
extended opposite side.

angle (between two lines) The smallest of the two angles formed between two intersecting lines.

angle (between two planes) The dihedral angle formed by two planes, which is also the angle
between the planes’ normals.

angle (of depression) The angle between a reference horizontal line from the observer’s eye and
the line of sight to an object below the observer.

angle (of elevation) The angle between a reference horizontal line from the observer’s eye and
the line of sight to an object above the observer.

angle (of indination) The positive angle between 0° and 180° that a line makes with the x-axis.
annulus  The region bounded by two concentric co-planar concentric circles.

apex The point that is the greatest distance from an edge or plane.

apothem (of aregular polygon) The perpendicular from the center of a polygon to a side.

arc The part of a circle between two points on the circle.

ardength The length of an arc of a circle.

arccosine  The inverse function of the trigonometric cosine function with domain [0, 7].

arsine  The inverse function of the trigonometric sine function with domain [—% T, % 7).
arctangent The inverse function of the trigonometric tangent function with domain

[—%77,%77].

325
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area (of a geometricsolid) The total area of all the solid’s faces.

Argand diagram  Represents complex numbers as points on a plane such thatz = x + yi
represents the point (x, y).

astroid A hypercycloid of four cusps.
asymptote A straight line to which a curve approximates but never touches.
auxiliary line A line introduced to a geometric figure to clarify a proof.

axiom An unproven mathematical statement, e.g. Two straight lines may intersect at one
point only.

axis A line of reference for measuring distances (x-axis) or a straight line that divides a
plane or solid figure.

axis of symmetry A straight line reference used to describe the symmetric properties of a
shape or figure.

Barycentric coordinates A set of numbers locating a point in space relative to a set of fixed
points.

baseangles The two angles formed by a base line and two sides, as found in an isosceles
triangle.

binomial expansion The expansion of a binomial expression of the form (a + b)".

bisect To divide into two equal parts.

bisector A point, line or plane that divides a figure into two equal parts.

bisector (of anangle) The line that divides an angle into two equal angles.

cardioid The locus of a point on a circle in R? that rolls on an equal, fixed circle. The equation

is given by x* + y* + ax = a\Jx* + y*.

Cartesian coordinate system A system where a pair of coordinates (x, y) define a point in R? or
three coordinates (x, , z) define a point in R®.

Cartesian unitvector A unit vector aligned with the x-, y- or z-axis.

catenary The curve of a heavy cable hanging in a gravitational field.

catenoid The surface of revolution formed by rotating a catenary about a vertical axis.

central angle (of a regular polygon) The angle formed at a polygon’s center by two radii to an angle.
center (of an ellipse or hyperbola) The point of intersection of the axes of symmetry of the conic.
centroid A point in a shape representing the arithmetic mean of the coordinates.

chord A line segment joining two points on a curve.

cirde The set of points in a plane that are a fixed distance (radius) from a specified point
(center) in the plane.

circle of curvature  The circle whose radius equals the radius of curvature of a curve.

circular functions  The trigonometric functions: sine, cosine, tangent, cosecant, secant and
cotangent.

circumcenter The common point of intersection of the perpendicular bisectors of the sides of
a triangle.
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crecumdircle  See circumscribed circle.

circumference The length of a circle’s boundary.

circumscribed cirde  The circle which intersects all the vertices of a polygon.
co-linear points Two or more points intersected by a common line.

complementary angles Two angles whose sum equals 90°.

complex number A number of the form a + bi where i = \/jl and a and b are real numbers.
component (of avector) See vector.

component form (of avector) Representing a vector a in terms of its Cartesian unit vectors i and
jia=xi+ yj + zk.

concave polygon A polygon which contains one or more angles greater than 180°.

concentric Means that two circles or spheres share a common center.

concurrentlines Three or more lines passing through a common center.

cone A solid figure formed by a closed curve base and a separate vertex through which lines
intersect with points on the closed curve.

congruent Identical.
congruenttriangles Identical triangles.

conicsections The curves obtained as cross-sections when a double cone is sliced by a plane.
See also ellipse, hyperbola, and parabola.

contour plot A set of contours for a given function.
convex polygon A polygon whose angles are all less than 180°.

coordinate A scalar used within a coordinate system to locate a point. See Cartesian
coordinate system, cylindrical coordinate system, and spherical coordinate system.

corresponding angles Two angles in the same relative position when two lines are intersected by
a third line. When the two lines are parallel, the corresponding angles are equal.

cosecant (ofanangle @) A trigonometric function representing 1/sin e, provided that sina # 0.

cosine (ofanangle &) A trigonometric function representing the ratio of the adjacent side to
the hypotenuse in a right-angled triangle.

cosinerule A rule relating the three sides and one angle of a triangle.

cotangent (of anangle ) A trigonometric function representing 1/tan o, provided that
tana # 0.

cross product  See vector product.

cube A platonic object having six square faces (hexahedron).

cubic A mathematical expression of the form ax® + bx* + cx + d where a # 0.
cubicexpression A polynomial of the form ax® + bx® + cx + d where a # 0.
cusp A double point on a curve at which two tangents are coincident.

cylinder A solid formed by a closed cylindrical surface bounded by two planes.

cylindrical coordinate system A system of coordinates where a point is located in space with
reference to its height above a ground plane and its polar coordinates on this plane.
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derivative of a function For a function f(x) its derivative f'(x) is the gradient of the graph at
point x.
determinant of amatrix A scalar quantity derived from the terms of a matrix. If

A= [‘Z Z], det A = ad — bc.

diagonal A line joining two nonadjacent vertices.

diameter A chord through the center of a circle or sphere.

dihedral group The group of order 2n formed by the symmetries of a regular n-gon.
direction cosines  The angles formed between a line and the x-, y- and z-axes.

directrix A line associated with a conic. See also eccentricity.

discriminant (of a quadratic equation) The term b — 4ac.

dodecahedron A Platonic object that has 12 faces, each of which is a regular pentagon.
domain of a function The set of allowable input values for a function. See also function.
dotproduct See scalar product.

eccentricity The ratio of the distances from a point on a conic to the focus of the conic and
from that point to the directrix of the conic.

edge A line joining two vertices.

ellipse A conic having eccentricity between 0 and 1.

equidistant Having equal distance from a reference point.

equilateral Having sides of equal length.

equilateral triangle A triangle that has sides of equal length.

Euclidean space Represented by the symbol R” where 7 is the spatial dimension.
exterior angle (of apolygon) The external angle of a polygon.

face A planar region bounding a polyhedron.

focus A point associated with a conic. See also eccentricity.

frustum Part of a solid figure cut off by two parallel planes.

function A rule which assigns to each element of one set one element of another set. For
example, f(x) = x + 1.

geometric form (of avector) Representing a vector a in terms of its magnitude ||a|| and
direction 6.

goldenratio The constant ¢ = %(l + \/g ) =1618...

goldenrectangle A rectangle with sides m (long side) and n (short side) such that m/n equals
the golden ratio.

gradient (of a graphatapoint) The gradient of the tangent to the graph at that point.
gradient (of aline) See slope (of a line).

hexagon A six-sided polygon.

hexahedron A polyhedron that has six faces (a cube).
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hyperbola A conic having eccentricity greater than 1.

hypotenuse The side opposite the right-angle in a right-angled triangle.

i-component (of avector) The scalar x in the component form of the vector a = xi + yj + zk.
icosahedron A polyhedron that has twenty faces.

identity matrix A matrix, whose function performs a null operation.

imaginary part (of a complex number) The scalar term associated with the i term in a complex
number. See also complex number.

inclined plane A plane that is not horizontal.

intercept The point where a line or surface meets the x-, y- or z-axis.

interiorangle The angle between two sides of a polygon.

inverse trigonometric functions The functions sin~!,cos ™!, tan", csc !, sec !, and cot .
isogonal Having equal angles.

isometric Having equal lengths.

isoperimetric Having equal perimeters.

isosceles triangle A triangle with two equal sides only.

j-component (of avector) The scalar y in the component form of the vector a = xi + yj + zk.
k-component (of avector) The scalar z in the component form of the vector a = xi + yj + zk.
linear A first degree equation, expression, etc., such as x + 2y + 3z = 4.

linear transformation A function having the same domain and codomain such that x — Ax,
where the linear transformation is determined by matrix A.

locus A curve defined by a particular property.

magnitude (of avectora) The length of the line segment representing the vector, and written

as ||a]|-

major axis (of an ellipse) The line segment from (—a, 0) to (a, 0) for the ellipse x*/a* + y*/b* = 1,
wherea = b > 0.

matrix A rectangular array of numbers.

minor axis (of an ellipse) The line segment from (0, —b) to (0, b) for the ellipse x*/a® + y*/b* = 1,
wherea = b > 0.

n-gon A regular polygon with n sides.

obliqueangle An angle that is not a multiple of 90°.

oblique pyramid A pyramid whose vertex is not perpendicular to the center of its base.
obtuseangle An angle between 90° and 180°.

octagon An eight-sided polygon.

octahedron A polyhedron with eight faces.

ordered pair A set with a first and second element, e.g. (x, y).

ordinate The y-coordinate of a point as used in Cartesian coordinates.

origin A point of reference from which distances are measured.

orthogonal At right angles.
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parabola A conic having eccentricity 1.

parallelepiped A prism whose faces are parallelograms.

parallelogram A quadrilateral constructed from two pairs of parallel sides.
parameter A variable used when defining a function or curve.

parametricequation Equations that generate the coordinates of a point on a curve using a
common variable (parameter), e.g. x = cos(t), y = sin(t).

Pascal’s triangle The triangle of numbers used to generate binomial coefficients.
pentagon A five-sided polygon.

pentahedron A polyhedron with five faces.

perimeter The length of a closed curve.

perpendicular A line/plane that is at right angles to another line/plane.

perpendicular bisector (of a line segment) The line that cuts the line segment halfway along its
length and is at right angles to the line.

plane A surface where a line joining any two points on the surface is also on the surface.
point A point in space that has position but no spatial extension.

polar coordinates (of a pointP) The numbers r and 6 for the point P with Cartesian coordinates
(r cos O, rsiné).

polygon A figure constructed from three or more straight sides.

polyhedralangle The solid angle between three or more faces of a polyhedron.
polyhedron A figure constructed from plane polygonal faces.

position vector A vector representing the line segment from the origin to a point.

prism A solid figure constructed from two congruent polygons where corresponding vertices
are connected with straight edges.

pyramid A solid figure constructed from a polygonal base and lateral triangular faces.

Pythagoras’theorem For a right-angled triangle with sides a, b and c then a* = b* + ¢* where
a is the hypotenuse.

quadrant One of the four regions defined by the Cartesian coordinate system.

quadraticcurve A curve represented by an equation of the form Ax? + Bxy + Cy* + Dx +
Ey + f = 0,where A, B, C are not all zero.

quadrilateral A plane figure constructed from four edges.
quaternion A four-tuple of the form (s, v) where s is a scalar and v = ai + bj + ck.
radian A unit of angular measure such that 277 [rad] = 360°.

radius (of acirde) The distance from the center of the circle to any point on the circle’s
circumference.

rectangle A quadrilateral with all interior angles right angles.
rectangular hyperbola A hyperbola for which the asymptotes are at right angles.
reflexangle An angle between 180° and 360°.
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regular polygon A polygon with equal interior angles and equal sides.

regular polyhedron A polyhedron with congruent polyhedral angles and regular congruent
faces.

regularprism A right prism that has regular polygons as bases.
rightangle An angle equal to 90°.
right-angled triangle A triangle with one interior angle equal to a right angle.

right circular cone A cone for which the cross-sections obtained by slicing the cone with planes
at right angles to the axis are circles.

scalar A single number, as opposed to a vector.

scalarproduct A vector operation also known as the dot product, where given two vectors
aandb,a-b = ||a]| - ||b]| cos @, where « is the angle between the vectors.

scalene triangle A triangle constructed from three unequal sides.
secant (of anangle @) The secant of « is 1/cos @, provided that cosa # 0.
sector (of acirde) The region between two radii of a circle.

segment (of acirde) The region between a chord of a circle and the arc determined by the
chord’s ends.

semicirde  Half a circle.
similar Two shapes are similar if one is an enlargement of the other.

sine (of anangle @) A trigonometric function representing the ratio of the side opposite a to
the hypotenuse in a right-angled triangle.

sinerule A rule that relates pairs of sides and the corresponding opposite angles of a
triangle.

slope (ofaline) The gradient of a line expressed as a ratio of the y rise divided by the x run
between two points.

spherical coordinate system A polar coordinate system where a point P is defined as P = (1,0, ¢),
where r is a radius, 6 and ¢ are angles.

square A quadrilateral with four equal sides and interior angles are right angles.
supplementary angles Two angles whose sum equals 180°.

surface of revolution A surface created by rotating a contour about an axis.

tangent A line whose slope equals that of a curve where it touches the curve.

tangent (ofanangle ) A trigonometric function representing the ratio of the side opposite
to the adjacent side in a right-angled triangle.

tetrahedron A solid figure constructed from four triangular faces.
transformation Another name for a function.

trapezium A quadrilateral that has one pair of opposite sides parallel.
triangle A closed, three-sided figure.

triple product The product of three vectors A, B and C: the triple scalar productis A+ (B X C)
and the triple vector productis A X (B X C).
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unitcirde The circle with radius 1 and center at the origin.
unitsquare The square in R? with vertices (0, 0), (0, 1), (1, 1) and (0, 1).
vector A single column matrix.

vectorproduct A vector operation also known as the cross product, where given two vectors
aandb,a X b = ¢,where ||c|| = ||a]| - ||b]| sin @ and « is the angle between the vectors.

zerovector A vector in which every component is equal to zero.
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A
acute
angle, 4
triangle, 11
addition
quaternions, 33
vectors, 30
algebra
matrices, 2
vectors, 29
alternate
exterior angles, 4
interior angles, 4, 86
segment theorem, 183
altitude, see height
altitude theorem, 192
angle/angles, 4
acute, 4
alternate exterior, 4
alternate interior, 4
alternate internal, 219

between a line and a plane, 62, 143,311
between lines, 45, 55,112,131, 276
between planes, 61, 143,311

between vectors, 253
chord, circle, 9
complementary, 4
corresponding, 4
definitions, 4
exterior, 4

interior, 4

obtuse, 4

opposite, 4

right, 4

rotation, 4

straight, 4

subtended by the same arc, 183
supplementary, 4

vertical, 4

arc

circle, 9
definition, 9
length, circle, 9

area/areas

circle, 9, 184

cyclic quadrilateral, 16, 86, 209

ellipse, 9,187

Heron’s formula, 13, 81, 194,214

irregular polygon, 221

parallelogram, 212

polygon, 221

quadrilateral, 16,212,214

regular polygon, 19,220

sector, 185

segment, 184

spherical segment, 231

spherical triangle, 15

torus, surface, 23

trapezoid, 216

triangle, 13, 32, 81, 96, 193

triangle, determinant, 13, 82, 195

triangle, trigonometric method,
13

associative laws, vectors, 253
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B
barycentric coordinates, 151,318
base/bases
cone, 22
cylinder, 22
prism, 21
trapezium, 16
trapezoid, 16
triangle, 13
Bézier
curve, 68, 165,320
patch, 69, 166, 321

C
cardioid, 158
Cartesian coordinates system, 26, 249
Cavalieri’s theorem, 224
Cayley numbers, 256
center
of circle, 9
of sphere, 22
centroid, 15
chord, 9
angles subtended by, 9
theorem, 186
circle/circles, 9, 183
arc length, 9,78
area, 9,78,184
area of sector, 9,78
area of segment, 9,78
center, 9
circumference, 9
circumscribed, 201,217
definition, 9
diameter, 9
equation, 128,293
equation, parametric, 156, 293
inscribed, 198
intersecting, 51,290
length of chord, 9,78
perimeter, 9,78
properties of, 9,78
radius, 9
sector, area, 9,78, 185
segment, area, 9,78
touching, 51,290
circumcenter, triangle, 14
circumference, definition, 9
cofunction identities, 5, 75,171
coiled ring, 162

commutative properties, vectors, 253
complementary angles, 4
complex numbers, 256
components
vector product, 31
vectors, 29
compound-angle identities, 5, 173
cone/cones, 22, 88
area, 22, 88,228
formulas, 22
volume, 22,229
congruent triangles, 11
coordinate system/systems, 26, 90,
249
Cartesian, 26, 90, 249
cylindrical, 27, 91, 250
left-handed, 26
polar, 90, 249
polar, plane, 27
right-handed, 26
spherical, 28, 92, 250
cosecant, 5
cosine/cosines, 5
curve, 154
rule, 13,190
squared curve, 156
cotangent, 5
cross product, vectors, 254
cube/cubes, 23, 237
circumsphere radius, 23, 237
dihedral angle, 23,238
in-sphere radius, 23, 237
formulas, 23
mid-sphere radius, 23, 237
surface area, 247
volume, 23, 247
cubic
Bézier curve, 68, 165
Bézier patch, 69, 167
curve/curves
Bézier, 68, 165
cosine, 154
Lissajous, 156
parametric, 67, 154
second degree, 53
sine, 154
cyclic polygon, 19
alternate internal angles, 19,219
cyclic quadrilateral, 16, 86, 209
area, 16,209
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circumscribed radius, 16
diagonals, 16,209
symmetry properties, 16
cylinder/cylinders, 22, 88
formulas, 22, 88
surface area, 22, 88
volume, 22, 88
cylindrical coordinates, 27, 250

D
degree/degrees, angle, 4
determinants, 2
area properties, 195
diameter
circle, 9
sphere, 22
dihedral angle, 23,238,242
distance, 26
Cartesian coordinates, 26
cylindrical coordinates, 27
formulas, 26
polar coordinates, 27
spherical coordinates, 28
dodecahedron, 23, 237
circumsphere radius, 23, 237
dihedral angle, 23,238, 244
formulas, 23
in-sphere radius, 23, 237
mid-sphere radius, 23, 237
surface area, 23, 247
volume, 23, 248
dot product, 30, 252
double-angle identities, 5, 175

E
edge, polyhedron, 23
ellipse, 9
area, 9, 187
equation, 53, 128, 293
parametric equation, 156, 159,
293
ellipsoid, 70, 168
elliptic
cone, 70, 168
cylinder, 70, 168
hyperboloid, 70, 168
paraboloid, 70, 168
equation/equations
cardioid, 158
circle, 53,128

circle, parametric, 53
coiled ring, 16
ellipse, 53,128
ellipse, parametric, 53, 159
hyperbola, 54, 129
hyperbola, parametric, 54
intersecting lines, 42
logarithmic spiral, 157
Neil’s parabola, 158
parabola, 54, 128,157
parabola, parametric, 54, 157
parametric, line, 42
parametric, plane, 58
planar patch, 162
sinusoid, 161
sinusoidal ring, 162
spiral, 157, 159

equilateral triangle, 11, 200, 202,

206
Euclidean geometry, 4
even-odd identities, 5

F
face
lateral, prism, 21
lateral, pyramid, 21
focus, ellipse, 293
frustum
conical, 22, 88,228,230
pyramid, 21,227
functions of the half-angle, 5

G

geometry, Euclidean, 4
Guldin’s first rule, 233
Guldin’s second rule, 233

H
half-angle, functions, 5
height
cone, 22
prism, 21
trapezium, 16
trapezoid, 16
triangle, 13
Heron’s formula, 13, 194
Hessian normal form, 42, 58, 304
hexagon, 86
cyclic, 86
hexahedron, 23
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hyperbola, 54 3D definitions, 55, 297
definition, 54 3D intersecting, equations, 55, 297

equations, 54, 129, 296
equations, parametric, 54, 296
hypotenuse, 11

|
icosahedron, 23,237
circumsphere radius, 23, 237
dihedral angle, 23, 238, 245
formulas, 23
in-sphere radius, 23, 237
mid-sphere radius, 23, 237
surface area, 23, 247
volume, 23, 248
identity/identities
cofunction, 5,75, 171
compound angle, 5,75,173
double-angle, 5, 76,175
equations, 5,75
even-odd, 5,75
half-angle, 5,76,176
inverse trigonometric functions, 5
matrix, 37, 103, 108, 265,271
multiple-angle, 5,76, 175
Pythagorean, 5,75, 171
trigonometric, 5
interior angles, 4
interpolation
linear, 319
quadratic, 319
intersecting
circles, 126, 290
line and a circle, 123, 288
line and a plane, 62,311
line and a sphere, 64, 148,315
lines, 111,275
line segments, 286
planes, 61,139, 141, 308
isosceles triangle, 11

L
law of cosines, 13
law of sines, 13
law of tangents, 13
line/lines
2D definitions, 42, 272
2D intersecting, equations, 44
2D parallel, equations, 46, 278
2D perpendicular, equations, 46, 278

3D parallel, equations, 56
3D perpendicular, equations, 56
angle between, 112,131, 276, 298
Cartesian forms, 43,272
equidistant from two points, 48,
120,284

general form, 42
Hessian normal form, 42, 109, 273
intersecting a sphere, 64, 148
intersecting circles, 51
intersection, 49,111, 130, 275
normal form, 42, 109
parallel, 114, 132,278,298
parametric form, 42
perpendicular, 114, 132,278, 298
parallel, 4
segment, 49, 121, 285
shortest distance, 279
skew, shortest distance, 56, 134, 302
straight, 4
three points, 113, 131,277,298
two points, 43, 55,110, 130, 273

linear interpolation, 319

Lissajous curve, 156

M
magnitude, vectors, 30, 252
matrix
identity in R?, 37,103,265
identity in R?, 41, 108,271
median/medians, 15
intersection, triangle, 15
triangle, definition, 15
modulated surface, 68, 163
Mollweide’s formula, 191
multiple-angle identities, 5, 175

N

Neil’s parabola, 158
Newton’s rule, 192

normal vector, 109
normalizing a vector, 30, 252

(o)

oblique
cone, 22
cylinder, 22
prism, 21
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obtuse
angle, 4
triangle, 11

octahedron, 23,237
circumsphere radius, 23, 237
dihedral angle, 23,238
formulas, 23,237
in-sphere radius, 23, 237
mid-sphere radius, 23, 237
surface area, 23, 247
volume, 23, 248

octonions, 256

opposite angles, 4

ordinate, 26

P
parabola, 54
equations, 54, 128,295
equations, parametric, 54, 157, 295
Neil’s, 158
parallel line/lines, 46, 114, 132,278
equations, 46, 278
parallelogram, 16,207
altitude, 16,207
area, 16,207,212
diagonals, 16, 207,210
symmetry properties, 16,210
parallelpiped, 21, 225
volume, 21, 225
parametric
curve in R 67,154,319
curve in R, 67,158,319
surfaces in R, 163
perpendicular line/lines, 46, 114, 132,278
equations, 46, 114,278
planar patch, 67,162,318
plane equations, 58, 303
Cartesian, 58, 135, 303
from three points, 59, 137, 306
general form, 58, 135, 303
Hessian normal form, 58, 135, 303
parametric form, 59, 136, 305
plane/planes, 135
angle between, 61, 143, 311
equidistant from two points, 63, 145,313
intersecting, 60, 139, 308
normal to a line, 60, 138, 308
parallel to a line, 60, 138, 308
touching a sphere, 64
Platonic solids, 23,233

point/points
normal to a line, 48 57,119, 133, 283, 301
reflected in a line, 47, 57,117, 133, 281, 300
reflected in a plane, 63, 145,313
point on a line
nearest to a point, 47, 56,115, 132,
279,299
perpendicular to the origin, 46, 56,
279,299
point on a plane
nearest to a point, 62, 144, 312
point inside a triangle, 151,318
polar coordinates, 27, 249
polygon/polygons, 19, 86, 218
alternate internal angles, 219
area using angles, 220, 223
area using Cartesian coordinates, 19, 87
area using determinants, 221
area using edges, 19
circumradius, 222
cyclic, 19
external angles, 19,218
inradius, 222
internal angles, 19, 86,218
properties, regular, 222
regular, 19, 87
polyhedron/polyhedra, 23
position vector, 30
prism/prisms, 21
height, 21
parallelpiped, 21
rectangular parallelpiped, 21
volume, 21,224
product/products
scalar, 30
triple, scalar, 31
triple, vector, 32
vector, 30, 31
pyramids, 21
surface area, 225
volume, 21, 226
volume of a frustum, 21
Pythagorean
identities, 5,171
theorem, 12, 189

Q

quadrant, 26

quadratic Bézier curve, 165
quadratic Bézier patch, 166
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quadrilateral, 16, 19, 84, 207
area, 16, 84, 208,212,214
circumradius, 16, 83
cyclic, 86,209
diagonal, 16, 84
general, 16
in a circle, 16
inradius, 16
symmetry properties, 16
tangent, 16, 208

quaternions, 33, 97, 256
addition, 33,97
definition, 33
equal, 33
Hamilton’s rules, 33
inverse, 34, 97
magnitude, 34, 97
matrix, 34, 98
multiplication, 33, 97
rotating a vector, 34, 97
subtraction, 33, 97

R

radian, 5

radius/radii
circle, 9

circumscribed, circles, 14, 82

inscribed, circles, 14, 82
rectangle, 16,207
area, 16,207

circumradius, 16, 85,207,217

diagonal, 16, 207

symmetry properties, 16
rectangular parallelpiped, 21

surface area, 21

volume, 21

reflected ray on a surface, 63, 146, 314

regular
polygon/polygons, 19, 222
polyhedron/polyhedra, 23
pyramid, 21
rhomboid, see parallelogram
rhombus/rhombi, 16, 208
altitude, 16, 208
area, 16, 208
diagonals, 16, 208
symmetry properties, 16
right
angle, 4
cone, 22

cylinder, 22
prism, 21
triangle, 11

S
scalar
products, 30, 252
triple product, 31, 255
secant, 9
secant-tangent theorem, 9
secant theorem, 9
trigonometric function, 5
second degree
curves, 53,128,293
surfaces, 70, 168
sector
circle, 9
circle, area, 9, 185
segment
circle,9
circle, area, 9,184
spherical, 88
similar triangles, 11
sine, 5
curve, 154,161
rule, 13,189
square curve, 155
sinusoidal ring, 162
skew lines, 134, 302
solid geometry,
solids
Platonic, 23
of revolution,
sphere, 22,88
equation, 70, 168
surface area, 22, 88,230
touching a plane, 64, 149
touching a sphere, 64
volume, 22, 88,231
spherical
coordinates, 28,250
triangle, 15
spherical segment, 22
surface area, 22, 231
volume, 22, 232
spherical trigonometry, 15
cosine rule, 15
sine rule, 15
spiral/spirals
logarithmic, 157
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three-dimensional, 159

two-dimensional, 157
square, 207

area, 207

circumradius, 207

diagonal, 207, 211

inradius, 207
straight

angle, 4

line, 4

lines, equations,
straight lines

angle between, 45, 55

from three points, 45, 55

parallel, 46, 56

perpendicular, 46, 56
subtraction, vectors, 30
sum/sums

angles of triangle,

vectors, 30
supplementary angles, 4
surface area

cone, 22

cube, 23,243

cylinder, 22

dodecahedron, 23, 244

icosahedron, 23, 245

octahedron, 23, 243

Platonic objects, 246

rectangular pyramid, 225

sphere, 22

spherical segment, 22,231

tetrahedron, 23

torus, 23,233

T
tangent, 5
rule, 13,190
tangent quadrilateral, 16
area, 16
symmetry properties, 16
tetrahedron/tetrahedral, 21, 23,
236
circumsphere radius, 23, 237
dihedral angle, 23, 238, 242, 244
formulas, 23,236
in-sphere radius, 23, 236
mid-sphere radius, 23, 236
surface area, 23, 247
volume, 21, 23, 89, 247

theorem/theorems
alternate segment, 183
altitude, 192
Cavalieri’s, 224
chord, 186
Heron’s formula, 13
Pythagorean, 12, 189
secant, 186
secant-tangent, 186
three-dimensional objects, 224
touching
circles, 126,290
line and circle, 288
sphere and a plane, 149,316
spheres, 150,316
torus, 23
surface area, 23, 89
volume, 23, 89,233
transformations, 35, 99, 260
homogeneous, 260
reflection in R2, 36,101, 263
reflection in R3, 39, 106, 268
rotation in R?, 35, 100, 261
rotation in R?, 38, 104, 266
rotation, axes in R?, 37,102, 264
rotation, axes in R>, 41,108,270
scaling in R, 35, 99, 260
scaling in R, 38, 103, 265
shearing in R?, 100, 262
translation, axes in R?, 37, 102, 264
translation, axes in R3, 40, 108,270
translation in R?, 35,99, 261
translation in R?, 38, 104, 266
trapezium, 16, 208
altitude, 16,208
area, 16,208
diagonals, 16, 208
symmetry properties, 16
trapezoid,
area, 16,216
triangle/triangles, 11, 151
acute-angled, 11
area, 13, 32,81, 96,193
area, determinant, 13
area, Heron’s rule, 13
area, trigonometric method,
centroid, 15
circumcenter, 14
circumscribed circle, 14, 201
congruent, 11,79



342

Geometry for computer graphics

triangle/triangles (contd)
equilateral, 11, 200, 202, 206
external angles, 13,196
height, 13
inscribed circle, 14, 198
internal angles, 13, 196
isosceles, 11
medians, 196
obtuse-angled, 11
point inside, 151
right-angled, 11, 202
scalene, 11
similar, 11,79
three-dimensional, 318
types of, 11
vector normal, 32
trigonometric
functions, 5, 75,171

functions converting to the half-angle tangent

form, 5,77

functions of the half-angle, 5,76, 176

identities, 5,75, 171
inverse trigonometric, 5, 182
sums of functions, 5,77, 180
values, table, 5
trigonometry, 5, 75
spherical, 15
triple product, 31,32

V)
unit vectors, 29, 252

\"/

vector/vectors, 2, 29, 74, 94, 252
addition, 30, 94
algebraic, 29
analysis,
angle between, 31, 95, 253
associative laws, 30, 253

between two points, 29, 94
column, 2
commutative laws, 30, 253
components, 29
cross product, 31,95
distributive law, 30, 31
dot product, 30, 252
magnitude, 30, 94, 252
normal, 32,96
normalizing, 30, 94, 252
position, 30, 95
product, components, 31
products, 30, 31
reversing, 29, 94
row, 3
scalar product, 30, 95,252
scalar triple product, 31, 96, 255
scaling, 29, 94
subtraction, 30, 94
unit, 29
vector product, 31,254
vector triple product, 32
vertex/vertices,
vertical angles, 4
volume
cone, 22,229
cube, 23,247
cyclinder, 22
dodecahedron, 23, 247
hexahedron, see volume, cube
icosahedron, 23, 247
octahedron, 23, 247
prism, 224
rectangular pyramid, 226

rectangular pyramidal frustum, 227

sphere, 22,231

spherical segment, 22, 232
tetrahedron, 21, 23, 247
torus, 23,233
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